




Hello there!

My name is Alexander Fufaev. You may

know me from YouTube or from my website

"fufaev.org". I'm a freelance theoretical

physicist, and in this book I explain theoretical

physics - the stu� you're going to study,

are studying, or have studied in your

physics degree, but haven't quite grasped

yet. This book aims to provide an intuitive

understanding of the key topics in

theoretical physics at undergraduate

level and serves as a perfect entry point for deepening your understanding.

You should be familiar with the basics of vector, di�erential and integral

calculus. If these concepts are new to you, it's a good idea to understand them

�rst before delving into this book.

Weekly assignments at university are not easy for beginners and require a lot

of time. The content is rushed through, so it's easy to �nd yourself not only

failing to understand many topics, but also struggling to keep up with the weekly

assignments. This often leads to not completing the required credits or failing

the exams at the end of the semester.



Having completed my M.Sc. in Physics, I know exactly in retrospect what I

would have needed in the theoretical physics modules to meet the academic

requirements and pass the exams. A fundamental, intuitive understanding of

the topics would have been essential because often I didn't know what the

assignments are talking about. In some cases, I understood the assignment but

didn't know how to approach it. There were also assignments I could solve,

but I wasn't sure what or why I was calculating something.

If you work through this book from the �rst to the last chapter, you'll �nd it

much easier to master the assignments in theoretical physics and pass

the exams more easily.

May physics be with you!
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1. Differential equations

More: en.fufaev.org/di�erential-equations

If you plan to deal with...

� the atomic world,

� the movement of the planets,

� chemical processes,

� electrical circuits,

� weather forecasts

� or with the spread of a virus

then you will eventually encounter di�erential equations. You will encounter

di�erential equations in every part of theoretical physics, so it is important to

understand how to work with di�erential equations.

1.1 What is a differential equation?
Let's take a look at Hooke's law as a simple example:

F = −D y (1.1)

https://en.fufaev.org/differential-equations
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This law describes the restoring force F on a mass attached to a spring. The

mass experiences this force when you de�ect it from its rest position by the

distance y. D is a constant coe�cient that describes how hard it is to stretch

or compress the spring.

The mass m is hidden in the force. We can write the force using Newton's

second law as ma:

ma = −D y (1.2)

Here a is the acceleration that the mass experiences when it is de�ected by y

from its rest position. As soon as you pull on the mass and release it, the spring

will start to oscillate back and forth. Without friction, as in this case, it will

never come to a standstill.

While the mass oscillates, the displacement y naturally changes. The

displacement is therefore dependent on the time t. This means that the

acceleration a also depends on the time. The mass naturally remains the same

at all times, regardless of how much the spring is de�ected. This also applies

to a good approximation for the spring constant D:

ma(t) = −D y(t) (1.3)
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If we only bring m to the other side, we can use this equation to calculate the

acceleration that the mass experiences for each displacement y:

a(t) = −D
m
y(t) (1.4)

But what if we are interested in the question: At what displacement y will

the spring be after 24 seconds?

In order to answer such a future question, we need to know how exactly y

depends on the time t. We only know THAT y depends on time, but not HOW.

Di�erential equations come into play for such future questions. We can easily

show that the acceleration a is the second time derivative of the distance covered,

so in our case it is the second derivative of y with respect to time t:

d2y(t)

dt2
= −D

m
y(t) (1.5)

We have now set up a di�erential equation for the displacement y(t)! You

can recognize a di�erential equation by the fact that it in addition to the

unknown function y(t), there are also derivatives of this function. As

in this case, the second derivative of y with respect to time t.

We can therefore conclude: A di�erential equation is an equation that

contains an unknown function and derivatives of this function.

1.2 Different notations
You will certainly encounter many ways of writing a di�erential equation. We

have written down our equation 1.5 for the spring oscillation of a mass in a

Leibniz notation. Here it is again:

d2y(t)

dt2
= −D

m
y(t) (1.6)
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You will often come across this in physics. We can also write it down a little

more compactly without mentioning the time dependency:

d2y

dt2
= −D

m
y (1.7)

If the function y(t) only depends on the time t, then we can write down the time

derivative even more compactly using Newton notation. A time derivative of

y corresponds to a point above the ẏ. With two derivatives, as in our case, there

would therefore be two points above the function:

ÿ = −D
m
y (1.8)

Obviously, this notation is rather unsuitable for considering the tenth derivative.

Another notation that you are more familiar with from mathematics is

Lagrange notation. Here, dashes are used for the derivatives. So two dashes

for the second derivative:

y′′ = −D
m
y (1.9)

With Lagrange notation, it should be clear from the context with respect to

which variable is being di�erentiated. If this is not clear, the variable on which

y depends must be mentioned explicitly:

y′′(t) = −D
m
y(t) (1.10)

Each notation has its advantages and disadvantages. However, it should be

noted that these are only di�erent notations that represent the same physics.

Rearranging and renaming does not change the physics under the hood of a

di�erential equation. We could also call the displacement x:

d2x(t)

dt2
= −D

m
x(t) (1.11)
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1.3 What should I do with a differential

equation?
In order to answer our original question: "At what displacement will the spring

be after 24 seconds?", we need to solve the di�erential equation. Solving a

di�erential equation means that you have to �nd out how the unknown function

y(t) depends exactly on the variable t: y(t) = ...

For simple di�erential equations, such as that of the oscillating mass, there are

methods that you can use to get the unknown function y(t). Keep in mind,

however, that there is no general recipe for solving any di�erential equation.

For some di�erential equations there is not even an analytical solution!

�Non-analytical� means that you cannot write down a concrete equation for the

function y(t) = ....

Di�erential equations that cannot be solved analytically can only be solved on

the computer numerically. Then the computer does not spit out a concrete

formula y(t) = ..., but data points y(t1), y(t2), y(t3), ..., which you can plot in a

y-t diagram and use to analyze the numerically solved function y(t).

1.4 Recognize differential equations
As soon as you come across a di�erential equation, the �rst thing to do is to

�nd out,

� what the unknown function is

� and on which variables it depends.

In the di�erential equation 1.5 of the oscillating mass, the function we are looking

for is called y(t) and it depends on the variable t:

d2y(t)

dt2
= −D

m
y(t) (1.12)

As an example, take a look at the three-dimensional wave equation that describes

the electric �eld E of an electromagnetic wave propagating at the speed of light
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c:

∂2E

∂x2
+

∂2E

∂y2
+

∂2E

∂z2
=

1

c2
∂2E

∂t2
(1.13)

What is the unknown function in this equation? It is the function E. Why is

that? Because the di�erential equation contains the derivatives of E. On which

variables does the function dependent? The dependency is not explicitly stated

here, but you can immediately see from the curved del character ∂ that it must

depend on several variables. You can immediately see from the derivatives in

the di�erential equation that the unknown electric �eld depends on x, y, z and

t. So on a total of four variables: E(x, y, z, t).

Let's look at a slightly more complex example. This system of di�erential

equations describes how a mass moves in a gravitational �eld:

d2x

dt2
= G

m

x2 + y2 + z2
(1.14)

d2y

dt2
= G

m

x2 + y2 + z2
(1.15)

d2z

dt2
= G

m

x2 + y2 + z2
(1.16)

You have a coupled system of di�erential equations in front of you. In

this case, a single di�erential equation is not su�cient to describe the motion

of a mass in the gravitational �eld. In fact, three functions are required here,

namely the trajectories x(t), y(t) and z(t), which determine a position r(t) =

(x(t), y(t), z(t)) of the mass in three-dimensional space. Each function describes

the movement in one of the three spatial directions.

By �coupled� we mean that, for example, the �rst di�erential equation for the

function x(t), also contains the function y(t). This means that we cannot

simply solve the �rst di�erential equation independently of the second

di�erential equation, because the second di�erential equation tells us how it

behaves in the �rst di�erential equation. The functions we are looking for

occur in all three di�erential equations, which means we have to solve all three
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equations simultaneously. You may learn exactly how to do this in your

math lectures.

1.5 Classify a differential equation
There are many di�erent di�erential equations. But if you look closely, you will

notice that some di�erential equations are similar to each other.

After you have found out what the unknown function is and on which variables

it depends, you should answer a few more basic questions to choose the

appropriate solution method for the di�erential equation. We need to

classify the di�erential equation:

� Is the di�erential equation ordinary or partial? Partial di�erential

equations describe multidimensional problems and are signi�cantly more

complex.

� Of which order is the di�erential equation? First-order di�erential

equations are usually easy to solve and describe, for example, exponential

behavior such as radioactive decay or the cooling of a liquid. Second-order

di�erential equations, on the other hand, are somewhat more complex and

also occur frequently in nature. Maxwell's equations in electrodynamics,

the Schrödinger equation in quantum mechanics - these are all second-

order di�erential equations.

� Is the di�erential equation linear or non-linear? The

superposition principle applies to linear di�erential equations, which is

very useful for describing electromagnetic phenomena, for example.

Non-linear di�erential equations are much more complex and are used,

for example, in non-linear electronics to describe superconducting

currents. In addition, chaos can only occur with non-linear di�erential

equations of third or higher order. As soon as you come across a

non-linear di�erential equation, you can actually throw away pen and

paper and treat the equation numerically directly on the computer. Most

non-linear di�erential equations cannot even be solved analytically!
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� Is the linear di�erential equation homogeneous or

inhomogeneous? Homogeneous linear partial di�erential equations

(PDEs) are simpler than inhomogeneous ones and describe, for example,

an undisturbed oscillation, while inhomogeneous PDEs are also able to

describe externally disturbed oscillations.

Once you have classi�ed a di�erential equation, you can use a suitable solution

method to solve the equation. Even if there is no speci�c solution method, the

classi�cation tells you how complex a di�erential equation is.

Let's classify the DGL for the oscillating spring, wave equation, mass in the

gravitational �eld and for the decay law.

1.5.1 Ordinary or partial?
Let's take a look at the di�erential equation for the oscillating mass:

d2y(t)

dt2
+

D

m
y(t) = 0 (1.17)

This is an ordinary di�erential equation. Ordinary means that the function

y(t) depends on only one variable. In this case on the time t.

What about the wave equation for the electric �eld?

∂2E

∂x2
+

∂2E

∂y2
+

∂2E

∂z2
=

1

c2
∂2E

∂t2
(1.18)

This is a partial di�erential equation. "Partial" means that the function you
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are looking for depends on at least two variables and there are derivatives

with respect to these variables. In this case, the function E depends on

four variables: x, y, z and t. And derivatives with respect to these variables also

occur in the di�erential equation.

1.5.2 Of what order?
The di�erential equation for the oscillating mass is a di�erential equation of

2nd order. The order of a di�erential equation is the highest occurring

derivative of the unknown function:

d2y

dt2
+

D

m
y = 0 (1.19)

Since the second derivative is the highest and even the only derivative of in

the di�erential equation, the oscillating mass at the spring is the 2nd order

di�erential equation.

1.5.2.1 How to reduce the order

It is always possible to convert a higher order di�erential equation into a

system of 1st order di�erential equations. Sometimes this procedure is

helpful when solving a di�erential equation.

For example, we can convert the di�erential equation 1.19 for the oscillating

mass on the spring (second-order di�erential equation) into two coupled �rst-

order di�erential equations. All we have to do is introduce a new function,

let's call it v and de�ne it as the �rst time derivative of the unknown function

y:

v =
dy

dt
(1.20)

This is already one of the two coupled �rst-order di�erential equations. Now

we just have to express the second derivative in the original di�erential equation

with the derivative of v. Then we get the second 1st order di�erential equation.
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The two coupled di�erential equations are as follows:

v − dy

dt
= 0 (1.21)

dv

dt
+

D

m
y = 0 (1.22)

The two di�erential equations are coupled. We must therefore solve them

simultaneously. They are coupled because y occurs in the �rst equation and v

in the second equation.

You can always proceed in this way if you want to reduce the order of a

di�erential equation. The price you have to pay for this is additional coupled

di�erential equations.

Let's continue. Of what order is the di�erential equation for the decay

law?

−λN =
dN

dt
(1.23)

This is a di�erential equation 1st order, because the highest occurring

derivative of the function N(t) is the �rst derivative.

1.5.3 Linear or non-linear?
The di�erential equation for the oscillating mass is linear:(

d2y

dt2

)1

+
D

m
y1 = 0 (1.24)

�Linear� means that the unknown function and its derivatives only

contain powers of 1 and there are no products of derivatives with the

function, such as y2 or y ÿ. There are also no composition of functions,

such as sin(y(t)) or
√
y(t). For products, compositions and higher powers, we

speak of nonlinear di�erential equations.

Note! The �to the power of two� in the second derivative in the Leibniz

notation d2y
dt2

is not a power of the derivative, but merely a notation for the
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second derivative.

The decay law is also linear:

−λN1 =

(
dN

dt

)1

(1.25)

What about the wave equation? It is also linear:(
∂2E

∂x2

)1

+

(
∂2E

∂y2

)1

+

(
∂2E

∂z2

)1

=
1

c2

(
∂2E

∂t2

)1

(1.26)

The coupled di�erential equation system for the motion of a mass in the

gravitational �eld, on the other hand, is non-linear because higher powers of

the functions x(t), y(t) and z(t) occur there, namely x2, y2 and z2.

1.5.4 Homogeneous or inhomogeneous?
For homogeneous and inhomogeneous types of di�erential equations, the

coe�cients multiplied by the unknown function and its derivatives are

important. For some solution methods, it is important to distinguish

between...

� constant coe�cients - these do not depend on the variables on which the

unknown function also depends.

� non-constant coe�cients - these depend on the variables on which the

unknown function depends.

A coe�cient does not necessarily have to be multiplied by the unknown function

or its derivative. The coe�cient can also stand alone! In this case, the coe�cient

is referred to as perturbation function.

Let's take another look at the oscillating mass:

1
d2y

dt2
+

D

m
y = 0 (1.27)

In this di�erential equation, there is an interesting coe�cient that is multiplied
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by the unknown function y, namely D
m
. Strictly speaking, the second derivative

is also preceded by a coe�cient, namely 1 and the single coe�cient, i.e. the

perturbation function, is 0. If the perturbation function is zero, then we

call the linear di�erential equation homogeneous.

The wave equation also has no perturbation function (no stand-alone coe�cient).

The di�erential equation is therefore homogeneous:

1
∂2E

∂x2
+ 1

∂2E

∂y2
+ 1

∂2E

∂z2
=

1

c2
∂2E

∂t2
(1.28)

The di�erential equation for a forced oscillation, on the other hand, is

inhomogeneous:

1
d2y

dt2
+ µ

dy

dt
+

D

m
y = F (t) (1.29)

Here, the external force F (t) corresponds to the perturbation function. As you

can see, it stands alone without being multiplied by the function y(t) or its

derivatives. In addition, the perturbation function is time-dependent, so it is a

non-constant coe�cient.

1.6 Constraints
A di�erential equation alone is not su�cient to describe a physical system

uniquely. The solution of a di�erential equation describes many possible

systems that exhibit a certain behavior.

For example, the solution N(t) of the decay law describes an exponential

behavior. However, the knowledge of an exponential behavior is not

su�cient to be able to say speci�cally how many nuclei N(t = 10) have

decayed after 10 seconds.

For this very reason, every di�erential equation usually has constraints. These

are additional information that must be given for a di�erential equation in order

to determine the unique solution of the di�erential equation. The number

of necessary constraints depends on the order of the equation.
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� Only one constraint is required for a 1st order di�erential equation:

One function value of the unknown function: y(t). For the decay law, for

example, it should be known how many undecayed nuclei N(t = 0) there

were at the time t = 0. For example, 1000 nuclei. Then the constraint is:

N(0) = 1000.

� For a 2nd order di�erential equation, two constraints are necessary: A

function value of the unknown function y(t) and y′(t). For the oscillating

mass, for example, it should be known what displacement y(t = 0) the

spring had at the time t = 0, e.g. y(0) = 1 and what the velocity y′(t = 0)

of the mass was at this time, e.g. y′(0) = 0.

� For a 3rd-order di�erential equation, three constraints would then be

necessary so that the solution of the di�erential equation uniquely

describes the system under consideration: A function value y(t) = A of

the unknown function, a function value y′(t) = B e.g. its �rst derivative

and a function value y′′(t) = C e.g. its second derivative.

� For a 4th order, four constraints would then be necessary and so on...

We can therefore state: In order to uniquely determine the solution of a

nth order di�erential equation, n constraints are necessary.

Most of the time you will come across initial conditions and boundary

conditions. These are also just names for constraints that tell you what kind

of information you have about the system.

1.6.1 Initial conditions
Sometimes, for example, you know what the system was at a certain point in

time t = t0. This can be the initial time at which you de�ected and released an

oscillating mass. In this case, we speak of initial conditions. You determine

what the displacement y(t0) was at a speci�c point in time. And since we

need two constraints for the 2nd order equation, you also specify what the

displacement (i.e. the velocity) y′(t0) was at time t0.

We call a di�erential equation together with its initial conditions as
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initial value problem. If we solve the initial value problem, we can use the

solution to predict the future behavior of a system.

1.6.2 Boundary conditions
Let's take another look at the second-order di�erential equation for the

oscillating mass. And let's assume that we know the displacement y(t0) = y0

at time t0. Sometimes we are unlucky and do not know what velocity the

oscillating mass had at the initial time t0. We therefore do not know the

derivative y′(t0) at the time t0 at which we know the displacement. However,

we need two constraints, otherwise the solution is not unique and we cannot

use the function y(t) to calculate speci�c numbers for displacement.

However, we may know that after t = 6 seconds, for example, the oscillating

mass was in the maximum de�ected state. We therefore know the displacement

y(6) = y6.

If we know the constraints, such as y(t1) = y1 and y(t2) = y2, which at two

di�erent times t1 and t2 describe the system, then we speak of boundary

conditions: y(t1) = y1 and y(t2) = y2.

We call a di�erential equation together with two boundary conditions

as boundary value problem. If we solve the boundary value problem, we can

use the solution to predict how the system will behave within these boundary

values.

The 'function value at two di�erent times' was of course just an example.

Instead of time, it could be any variable that de�nes the system, usually at the

boundaries: at di�erent times, at di�erent locations, at di�erent angles and
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so on.

You have now learned the most important basics of di�erential equations. This

knowledge will help you as undergrad.





2. Tensors

More: en.fufaev.org/tensors

Before we fully understand tensors in their general de�nition, let's �rst get to

know them from an engineering perspective. As long as you understand

scalars, vectors, and matrices, you'll �nd it easy to understand tensors from

this perspective because tensors are nothing but a gegeneralization of

scalars, vectors, and matrices. Just as we use scalars, vectors, and

matrices to describe physical laws, we can use tensors to describe physics.

Tensors are an even more powerful tool with which we can describe physics

that cannot be described solely with scalars, vectors, and matrices. In order to

develop the modern theory of gravitation, Albert Einstein had to �rst

understand the concept of tensors. Only then could he mathematically

formulate the general theory of relativity.

2.1 Tensors of Zeroth and First Order
Let's start with the simplest tensor: The zeroth order tensor. This is a

scalar σ, that is an ordinary number. This tensor has a single component and

represents, for example, the electrical conductivity of a wire. This zero-order

tensor σ indicates how well a wire conducts electricity in this case.

https://en.fufaev.org/tensors
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A slightly more complex tensor, let's call it j, is a �rst-order tensor. This is a

vector with three components j1, j2 and j3 in three-dimensional space:

j =

j1j2
j3

 (2.1)

In Eq. 2.1 we have represented the �rst order tensor as a column vector. Of

course, we can also represent it as a row vector:

j = [j1, j2, j3] (2.2)

At this stage, it doesn't matter how we write down the components. But

remember that it will play a role later!

The notation of �rst-order tensors as row or column vectors only makes sense if

we are working with concrete numbers, such as in computer physics, where we

use tensors to obtain concrete numbers. In order to calculate theoretically, for

example to derive equations or simply to formulate a physical theory, the tensors

are formulated compactly in index notation. You are probably already familiar

with this from vector calculus. Instead of writing out all three components of

the �rst-order tensor, we write them with an index k, that is, jk. What we

call the index does not matter. jk stands for the �rst component j1, second

j2 or third j3 component, depending on what we actually use for index k. In

theoretical physics, we usually do not use anything speci�c because we want to

write the physics as generally and compactly as possible.

From this index notation jk it is not clear whether it represents a column or

row vector. This is not good, because later it will be important to distinguish

between column and row vectors. But we can easily introduce this distinction

into our index notation by noting the index below jk if we mean a row vector.

And we note the index top jk if we mean a column vector. The notation of

indices above and below has a deeper meaning, which we will get to know later.

At this stage, we only distinguish the representation of the �rst-order tensor.
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2.2 Second-order tensors
The next more complex tensor is second-order tensor. Let us also denote

this tensor by σ, because a second-order tensor can describe electrical

conductivity. Electrical conductivity as a zero-level tensor describes isotropic

materials. The conductivity as a second-order tensor, on the other hand,

describes a non-isotropic material in which the conductivity varies depending

on the direction in which the current �ows.

You have certainly already become familiar with this tensor in mathematics in

the matrix representation. In a three-dimensional space, the second-order

tensor is a 3x3 matrix:

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.3)

We also use index notation for the second-order tensor and note the components

of the matrix with σmk, for example. The indices m and k can have the values

1, 2 or 3. The index m speci�es the row and the index k speci�es the column.

2.3 Tensors of higher orders
We can continue the game and consider a third-order tensor. This then has

three indices σmkn. The fourth-order tensor has four indices: σmkni. And so

on. The indices of a tensor of any level can also be superscripted. For example,

the indices mk of the fourth-order tensor can be at the top and the indices ni

at the bottom: σmk
ni. You will �nd out exactly what this means in the next

chapters.

The number of components dr of a tensor depends on the space dimension

d and on the level (rank) r of the tensor. In a three-dimensional space (d = 3),

a second-order tensor (r = 2) therefore has 32 = 9 components.
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2.4 Symmetric and antisymmetric tensors
In theoretical physics, especially in the theory of relativity and quantum

mechanics, we will regularly encounter symmetric and antisymmetric tensors.

A symmetric tensor tij remains the same if we swap its indices: tij = tji.

Speci�cally, swapping the indices of the second-order tensor as a matrix means

that the matrix remains the same if we transpose it, that is, mirror the rows

and columns on the diagonal:∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 (2.4)

This symmetry property of tensors is very useful and simpli�es calculations in

computer physics enormously. Moreover, this property is crucial in quantum

mechanics, because symmetric matrices have real eigenvalues. They therefore

represent physical quantities (we call them observables) that we can measure in

an experiment. So if you have a symmetric tensor in front of you, as a theoretical

physicist you should immediately get a dopamine kick. The Kronecker delta

δmk, for example, is a concrete example of a simple symmetric tensor.

We have considered a second-order tensor. What if the tensor is of a higher

order? What about its symmetry property then? For example, if the tensor

has four indices: tmkni, and it remains the same if we swap the �rst two indices:

tmkni = tkmni, then we are talking about a symmetric tensor in the �rst two

indices or more precisely: symmetric in the mk indices.

However, we will also encounter tensors that are antisymmetric. A

antisymmetric tensor tij changes sign when we swap its indices: tij = −tji.
If the antisymmetric tensor is represented as a matrix, then it is equal to its

negative transpose:∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 = −

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 (2.5)
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Unfortunately, most tensors are neither symmetric nor antisymmetric. But the

great thing is: Mathematically, we can split every tensor t into a symmetric

s and an antisymmetric a part: t = s+ a.

Let's take a look at how we can practically decompose a general tensor tij of the

second-order into the two parts.

1. The symmetric part sij of the tensor tij is sij = 1
2
(tij + tji). Here we

have swapped the two indices and added the two tensors together. The

factor 1
2
is important because we have counted the tensor twice here.

2. The antisymmetric part aij of the tensor tij ist aij =
1
2
(tij − tji). Here

we have swapped the two indices, so the swapped tensor gets a minus sign.

Then we add the two tensors together. The factor 1
2
is also important here.

3. We then add the symmetric and antisymmetric components together to

obtain the total tensor:

tij =
1

2
(tij + tji) +

1

2
(tij − tji) (2.6)

The �rst term in Eq. 2.6 is the symmetric part of the tensor tij and the second

term is the antisymmetric part.

2.5 Combine tensors
We can do little with tensors alone. We need to be able to perform calculations

with them. There are several arithmetic operations that we can use to combine

two tensors a and b into a new tensor c.

2.5.1 Addition of tensors
We can add two tensors aij and bij of the same order:

cij = aij + bij (2.7)

The result is a new tensor cij of the same order. If we represent the tensors a

and b as matrices, then adding tensors is nothing other than adding matrices
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component by component. The component a11 of the matrix a in the �rst row

and �rst column is added with the component b11 of the matrix b, which is also

in the same column and the same row. This is how matrix addition works. We

proceed in the same way with all other components. The result is the matrix c:

a11 a12 a13

a21 a22 a23

a31 a32 a33


︸ ︷︷ ︸

a

+

b11 b12 b13

b21 b22 b23

b31 b32 b33


︸ ︷︷ ︸

b

=

a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33


︸ ︷︷ ︸

c

(2.8)

2.5.2 Subtraction of tensors
We can subtract two tensors aij and bij of the same order:

cij = aij − bij (2.9)

The result is a new tensor cij of the same order. Subtraction works in the same

way as addition. Simply replace the plus sign in Eq. 2.9 with a minus sign.

2.5.3 The outer product of tensors (tensor product)
The next operation is probably new to you, namely the outer product ⊗.
Sometimes it is also called tensor product. Here, the same components are

not o�set against each other as with the addition and subtraction of tensors. For

this operation, the indices of the tensor aij and bkm must therefore be designated

di�erently. The tensor bkm has therefore been given the indices k and m.

cijkm = aij ⊗ bkm (2.10)

If we form the tensor product 2.10 of second-order tensors, then the result cijkm

is a fourth-order tensor. If, on the other hand, we form the tensor product

of tensors ai and bk of the �rst order, then the result is a tensor of the second
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order:

cik = ai ⊗ bk = aibk (2.11)

This is how the tensor product works with two tensors of any order. The only

exceptions are zero-order tensors. In this case, the result remains a zero-order

tensor. The tensor sign ⊗ is usually omitted in 2.10 and 2.11.

Let's make a concrete example of the tensor product that we can illustrate

well, namely the tensor product of �rst-order tensors as in Eq. 2.11. They are

represented by the vectors: a = [a1, a2, a3] and b = [b1, b2, b3]. The result is a

second-order tensor represented by a matrix:a1a2
a3

 ⊗

b1b2
b3

 =

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3


︸ ︷︷ ︸

c

(2.12)

The �rst index, the index i, numbers the rows of the matrix by de�nition and

the second index, the index k, numbers the columns.

The tensor product does not necessarily have to be between two tensors of the

same order. For example, we can also form the tensor product with the third-

order tensor Aijm and the second-order tensor Bkn. The result is a �fth-order

tensor Cijmkn:

Cijmkn = AijmBkn (2.13)

As you have probably already noticed, for example, Bkn speci�cally represents

the kn-th component of the tensor B. And Aijm is the ijm-th component of

the tensor A. If we form the tensor product as in 2.13, then this is the tensor

product of the components. The result is the ijmkn-th component of the tensor

C. When we write a tensor with indices, we always mean its components.

Nevertheless, we casually say �tensor� for its component notation.
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The tensor product naturally works in the same way with superscript indices,

which we will get to know in the next chapter. If the indices ij are at the top

of the tensor A, then they must also be at the top of the resulting tensor C:

Cij
mkn = Aij

mBkn (2.14)

2.5.4 Contraction of tensors
The next arithmetic operation we can perform is the contraction of a tensor.

Let's take the fourth order tensor as an example: tijmk. The contraction of this

tensor means the following:

1. We select two of its indices. For example, the index i and m: tijmk.

2. Then we set the two indices equal: i = m. For example, we can call them

both i: tijik.

3. We then sum over the index i:

+
i = 1

tijik

In three-dimensional space, the index i ranges from 1 to 3, so the

contraction of the tensor tijmk results in the following sum:

+
i = 1

tijik = t1j1k + t2j2k + t3j3k

If we want to communicate these three steps to another physicist, then we say:

Contraction of the indices i and m of the tensor tijmk. Or: contraction of the

�rst and third index of the tensor tijmk.

The contraction is very useful because it reduces the order of a tensor. For

example, the contraction of the fourth-order tensor tijmk has reduced its order

by two. The result of the contraction is a second-order tensor: tijik = cjk.

In physics, we use the Einstein sum convention, which states that we can

omit the sum sign in +
i = 1

tijik to simplify the notation if two identical indices
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appear in a tensor. With the tensor tijik in combination with the Einstein

summation convention, summation is therefore performed using the index i:

tijik = t1j1k + t2j2k + t3j3k (2.15)

If we contract a second-order tensor tii then the contraction is also called trace

of the tensor:

tii = t11 + t22 + t33 = Tr (t) (2.16)

The result is a zero-order tensor, that is, a scalar.

Of course, we can also contract the indices of two di�erent tensors. For example,

let's take a tensor Mij and a tensor vk. The tensor product Mijvk without

contraction results in a third-order tensor. Now we contract the indices j and k.

Then, in the matrix and vector representation, this corresponds exactly to the

multiplication of a matrix M with a vector v. The result ui is a �rst-order

tensor, that is, a vector:

Mij︸︷︷︸
M

vj︸︷︷︸
v

= ui︸︷︷︸
u

(2.17)

2.6 Kronecker Delta
More: en.fufaev.org/kronecker-delta

The Kronecker delta δij has become indispensable in theoretical physics. You

will encounter this relatively simple, yet powerful tensor in practically all areas

of theoretical physics. It is used, for example, to make long expressions more

compact and to simplify complicated expressions. In combination with the Levi-

Civita symbol, which you will learn in the next chapter, the two tensors are very

useful!

Kronecker delta δij is a small Greek delta that is either 1 or 0, depending on

the value of the two indices i and j. Kronecker delta is equal to 1 if i and j are

https://en.fufaev.org/kronecker-delta
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equal. And the Kronecker delta is equal to 0 if i and j are not equal:

δij =

{
1 i = j

0 i ̸= j
(2.18)

Let's take a few examples:

� δ11 = 1, as both indices are equal.

� δ23 = 0, as both indices are di�erent.

� aδ33 = a · 1 = a

� δ23δ22 = 0

Also note that, unless otherwise stated, we use the Einstein summation

convention we learned earlier. The same index is used for summation:

δijδjk = δi1δ1k + δi2δ2k + δi3δ3k (2.19)

However, there are exceptions to the Einstein summation convention. For

example, with the di�erential operator ∂i. You are not allowed to move ∂i in

front of fi if ∂i acts as a derivative of fi:

∂i fi ̸= fi ∂i

So be careful with operators in index notation!

Let's look at four useful rules with Kronecker delta that you can always use

when summing over double indices.

2.6.1 Kronecker delta is symmetric
Indices, here i and j, may be swapped:

δij = δji (2.20)
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2.6.2 Contracting with Kronecker delta
If the product of two or more Kronecker deltas contains a summation index,

here j, then the product can be combined, whereby the summation index j

disappears:

δij δjk = δik (2.21)

An example with two summation indices:

δijδkjδin = δkn (2.22)

This should make it clear that the order of contraction of the Kronecker delta

is irrelevant.

We can also apply this rule to the contraction of the Kronecker delta with

another tensor, here ai:

ai δij = aj (2.23)

Other example: Γjmk δnk = Γjmn.

2.6.3 Kronecker delta sum
If i takes the values from 1 to n, then the following rule applies:

δii = δ11 + δ22 + ...︸ ︷︷ ︸
n

= n (2.24)

In the four-dimensional spacetime: δii = 4.
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2.6.4 Scalar product in index notation
We can easily illustrate how useful the Kronecker delta is in theoretical physics

using the scalar product. Let's look at any three-dimensional vector:

a = [a1, a2, a3] (2.25)

= a1ê1 + a2ê2 + a3ê3 (2.26)

= aiêi (2.27)

Here, ê1, ê2 and ê3 are three basis vectors that are normalized and

orthogonal to each other. In this case, they span an orthogonal

three-dimensional coordinate system. For the third equal sign, we have used

the Einstein summation convention and represented the vector a in index

notation: aiêi.

Let's now take another vector b and also represent it in index notation: bjêj.

Note that we have to name the indices of the two vectors di�erently.

Now we form the scalar product of the two vectors:

a · b = (aiêi) · (bjêj) (2.28)

We can sort the objects in index notation in Eq. 2.28 as we like. Let's take

advantage of this and put brackets around the basis vectors to emphasize their

importance when introducing the Kronecker delta:

a · b = aibj (êi · êj) (2.29)

Thus we have converted the scalar product a · b of the two vectors to the scalar

product of the basis vectors êi · êj. The basis vectors are orthonormal (i.e.

pairwise orthogonal and normalized). Let's remember what the property of

being orthonormal means for two vectors:

� Scalar product êi · êj equals 1 if i and j equal. In this case, it is the same

vector.

� Scalar product êi · êj results in 0 if i and j are not equal. In this case,
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there are two di�erent basis vectors and they are orthogonal to each other.

The two behaviors can be written compactly in mathematical terms as follows:

êi · êj =

{
1 i = j

0 i ̸= j
(2.30)

Doesn't this property sound familiar to you? The scalar product 2.30 of two

orthonormalized vectors behaves exactly like the de�nition 2.18 of Kronecker

delta! Therefore, you may replace the scalar product between two basis vectors

with the Kronecker delta:

êi · êj = δij (2.31)

This allows us to calculate the scalar-product 2.29 by using the Kronecker

delta:

a · b = ai bj δij (2.32)

If you remember the rules for the contraction, we can contract one of the

summation indices i or j in 2.32. For example, let's contract (eliminate) the j.

We get the scalar product in index notation:

a · b = ai bi (2.33)

And eq. 2.33 is exactly the de�nition of the scalar product, where the vector

components are summed component by component.

Now you know how the scalar product is written in index notation and what role

the Kronecker delta plays. It represents the scalar product of the basis vectors:

êi · êj = δij.

■ Example 2.1 — Kronecker delta in quantum mechanics. The spin-up state

|1⟩ and the spin-down state |2⟩ are orthonormal to each other. The word

"orthonormal" should trigger a thought in your mind: Kronecker delta can be
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used here! Why again? Orthonormal vectors result in either 1 or 0, just like

the Kronecker delta.

The scalar product |i⟩ · |j⟩ in quantum mechanics is represented in Bra-Ket

notation ⟨i |j⟩ (we will learn this notation in the chapter 16):

|i⟩ · |j⟩ = ⟨i |j⟩ = δij (2.34)

Here, i and j take the values 1 (spin up) or 2 (spin down). ■

You can keep the following in mind: As soon as you discover an expression

in the index notation of an equation that results in either 0 or 1 depending on

the indices, replace it with Kronecker-Delta and use the Kronecker-Delta rules

above to simplify the equations further or to represent them in index notation.

2.7 Levi Civita symbol
More: en.fufaev.org/levi-civita-symbol

In addition to the Kronecker delta δij, the Levi-Civita symbol εijk is a very

common symbol in theoretical physics that is used in all areas of physics, from

classical mechanics to quantum �eld theory.

With the Levi-Civita symbol, which is sometimes also called the epsilon tensor,

you can easily transform and simplify complicated vector equations, such as

multiple cross products, and represent equations more compactly.

Levi-Civita symbol εijk is notated with a small Greek epsilon that has three

indices i, j and k. The Levi-Civita symbol can take on three di�erent values:

+1, 0 or -1. When does it take on which value? That depends on how the indices

ijk are arranged in relation to the original order. What do I mean exactly? Let's

take a closer look. You can permute (swap) the indices ijk. We can permute

the indices in two ways.

In the straight (cyclic) permutation, all indices ijk are rotated clockwise or

anti-clockwise. With this permutation, all indices change their position.

https://en.fufaev.org/levi-civita-symbol
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For example:

� An even permutation of ijk in a clockwise direction results in kij. Can

you see how the indices have been rotated here?

� An even permutation of kij in a clockwise direction results in jki.

� An even permutation of jki would again result in ijk. Remember that an

anticlockwise rotation of the indices is also an even permutation.

In an odd permutation, two indices are swapped with each other. In this

permutation, only two of the three indices ijk change position. For example:

� An odd permutation of ijk is jik. Here, i and j have been swapped, while

k has remained in the same place.

� Another odd permutation of ijk is kji. Here, i and k have been swapped,

while j has remained in the same place.

� And the last possible odd permutation of ijk is ikj. Here, i has been left

as it is, while j and k have been swapped.

With this knowledge, you will be able to understand the de�nition of the Levi-

Civita symbol. The permutations refer to a starting position of the indices.

Here we assume (ijk) = (123) as the starting position. Then the Levi-Civita



44 Chapter 2. Tensors

symbol behaves as follows:

εijk =


1 (ijk) is even permutation of (123)

− 1 (ijk) is odd permutation of (123)

0 at least two indices are equal

(2.35)

Here are a few examples:

� ε112 = 0, since the �rst two indices are equal.

� ε313 = 0, since the �rst and third indices are the same.

� ε222 = 0, since all three indices are equal.

� ε123 + ε213 = 1 + (−1) = 0, since the indices of the �rst epsilon are in the

start position and the indices of the second epsilon are an odd permutation

of this.

� ε123 ε231 = 1 · 1 = 1, since the indices of the �rst epsilon are in the starting

position and the indices of the second epsilon have just been permuted

counterclockwise.

2.7.1 Cross product in index notation
The enormous bene�t of the Levi-Civita symbol can be seen by looking at the

double cross product a×b×c or the parallelepipedial product (a×b) ·c.
But even for the simple cross product a × b of two vectors a and b, we need

the Levi-Civita symbol to be able to represent the cross product compactly in

index notation.

The cross product, written using the orthonormal basis vectors ê1, ê2 and ê3
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looks like this:

a × b =

a2 b3 − a3 b2

a3 b1 − a1 b3

a1 b2 − a2 b1

 (2.36)

= (a2 b3 − a3 b2) ê1

+ (a3 b1 − a1 b3) ê2

+ (a1 b2 − a2 b1) ê3

The i-th component (a × b)i of the cross product a× b, represented in

the orthonormal basis, we can write compactly in index notation as follows:

(a× b)i = εijk êi aj bk (2.37)

Take a look at the indices in eq. 2.37. All three indices i, j and k occur double.

Here we have used the Einstein summation convention, therefore we sum over

duplicate indices. If we insert concrete values for the indices in 2.37, we get

exactly the �rst (i = 1), second (i = 2) or third (i = 3) component of the cross

product. But eq. 2.37 is not only a compact notation of the cross product, it

is also a clever notation for the cross product, with which we can easily derive

relations for the parallelepipedial product and the double cross product.

For fun, write out the double cross product (a× b) × c with vector notation

and then write it out in index notation. And prove the following BAC-CAB

rule with one and the other method:

(a× b)× c = b (a · c) + c (a · b) (2.38)

You will be grateful to have learned about the Levi Civita symbol, as you will

encounter it regularly during your undergraduate and master's studies.





3. Dirac delta

More: en.fufaev.org/dirac-delta

The Dirac delta δ(x) (sometimes also called the Dirac delta function, although

it is not a function) is a useful mathematical object that is used in many areas of

theoretical physics. Starting in electrodynamics in the description of electric

point charges as a charge density concentrated in a single point, up to quantum

�eld theory in the description of quantum �elds as operators.

Let us consider a one-dimensional electric charge density ρ(x) that depends on

the position x. The charge density is therefore smeared on a line. ρ(x) can also

represent a mass density or any other density function. Here we look at the

charge density as an example.

To calculate how large the total charge Q is on this line, we must integrate

(sum up) the charge density ρ(x) on this line. Let's assume that the charge

density is smeared on the line from x = a to x = b. These are our integration

limits. The total charge is therefore calculated as follows:∫ b

a

ρ(x) dx = Q (3.1)

But what if Q is not a smeared charge, but a charge localized at a single point?

https://en.fufaev.org/dirac-delta
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What if Q is a singularity? The entire charge density ρ(x) is then concentrated

in a single point and zero everywhere else. And this is where the problem arises:

We cannot mathematically use the integral 3.1 for singularities. But we must

somehow be able to mathematically describe a point charge.

The charge density ρ(x) must ful�ll two properties if it is to describe a single

point charge:

� Charge density ρ(x) must disappear at every location x, except at the

location where the point charge is located. Let us assume that the charge

is located at the coordinate origin x = 0, that is: ρ(x) = 0 for x ̸= 0.

� The integral 3.1 over the charge density must give us the value Q if the

point charge lies within the integration limits x = a and x = b.

If we normalize the charge to the value Q = 1 and observe the both

properties of the charge density of a point charge, then we note the

density with a Greek delta δ(x) and call it the Dirac delta. The Dirac delta

therefore describes a density and has the following properties, which we have

chosen so that we can use it to describe a point charge (Q = 1):

� The Dirac delta is zero everywhere except at the origin:

δ(x) = 0, x ̸= 0 (3.2)

� If the integration of the Dirac delta includes the coordinate origin x = 0,

then the integral has the value 1:∫ b

a

δ(x) dx = 1, a < 0 < b (3.3)

Even though the name �delta function� may suggest that it is a function, δ(x)

is mathematically not a function, but another mathematical object that can

be understood as a Dirac distribution or as a Dirac measure. Let us therefore

continue to call δ(x) a Dirac delta so as not to upset the mathematicians.

The Dirac delta is graphically illustrated with an arrow that is located at the
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position x = 0 of the unit point charge Q = 1. The height of the arrow is usually

chosen so that it represents the value of the integral, in this case Q = 1.

3.1 Dirac delta in the coordinate origin
Let us now consider an integral of the delta function together with any function

f(x): ∫ b

a

f(x) δ(x) dx = ? (3.4)

Such an integral is very easy to calculate, because due to the property 3.3 the

Dirac delta is zero everywhere except at the point x = 0. This means that the

product f(x)δ(x) is also zero everywhere except at the point x = 0. In the

integral 3.4, only the function value f(0) remains. Since f(0) no longer depends

on x, we can move this constant in front of the integral:∫ b

a

f(x)δ(x) dx =

∫ b

a

f(0) δ(x) dx (3.5)

= f(0)

∫ b

a

δ(x) dx

= ?

The integral over the Dirac delta results in 1 if x = 0 lies between a and b

(otherwise the integral is zero). This is exactly the property of the Dirac delta.

So we know what the Dirac delta does in the integral 3.4 when multiplied by
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a function f(x). The Dirac delta picks the value of the function at the

origin x = 0:∫ b

a

f(x) δ(x) dx = f(0) (3.6)

3.2 Shifted Dirac delta
Of course, we can also move the charge Q = 1 to another position on the x-axis,

for example to the position x = x0. To indicate the charge shifted outside the

coordinate origin, we write the argument of the Dirac delta as δ(x− x0). Why

not δ(x+x0)? Because we have shifted the Dirac delta in the positive direction.

Then the delta function must be zero everywhere except at the point x0.

Even with a shifted charge, the integral over the delta function is equal to 1 if

the charge at x = x0 lies between the integration limits. We have only shifted

the Dirac delta to x0, so the value of the integral with δ(x− x0) is the same as

in the case of δ(x):∫ b

a

δ(x− x0) dx = 1, a < x0 < b (3.7)
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What happens if the shifted Dirac delta is multiplied by another function f(x)

in the integral? δ(x−x0) is zero everywhere except at the point x0. This means:
Shifted Dirac delta δ(x − x0) in the integral picks the function value

f(x0) at the point where the Dirac delta is located:∫ b

a

f(x) δ(x− x0) dx = f(x0), a < x0 < b (3.8)

3.3 Properties of the Dirac delta
The Dirac delta has two important properties that we will need in theoretical

physics when dealing with equations:

� The Dirac delta is symmetric:

δ(−x) = δ(x) (3.9)
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� The factor k in the argument of Dirac delta can be pulled out:

δ(k x) =
1

k
δ(x) (3.10)

3.4 Analogy to the Kronecker delta
The de�ning properties 3.2 and 3.3 of the Dirac delta δ(x − x0) are somewhat

reminiscent of the de�nition of Kronecker delta δij, if we call the letters the

same: x := i and x0 := j. The Dirac delta then looks like this: δ(i− j).

Recall what the Kronecker delta (with Einstein summation convention) does in

a sum fiδij with a vector component fi. It selects the j-th vector component of

the vector f (we have named the vector f to make the analogy clearer):

fi δij = fj (3.11)

And now compare that with what the Dirac delta does in the integral:∫ b

a

f(i) δ(i− j) = f(j) (3.12)

While we can use the Kronecker delta δij to pick a vector component fj from a

�nite number of vector components fi, we can use the Dirac delta δ(i − j) to

pick a function value f(j) from an in�nite number of function values f(i).

� The Kronecker delta δij is used when we are dealing with vectors f and

their �nite number of vector components fi.

� The delta function δ(i − j) is used when we are dealing with functions f

and their in�nite number of function values f(i).

3.5 Three-dimensional Dirac delta
So far, we have only considered a one-dimensional Dirac delta δ(x) that can be

moved back and forth along the x-axis. The charges or other density singularities

such as black holes are usually located in a three-dimensional space with three
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spatial axes: (x, y, z). Fortunately, the generalization of the Dirac delta to

three-dimensional space is quite simple.

δ(x) δ(y) δ(z) = 0, (x, y, z) ̸= (0, 0, 0) (3.13)

If our unit charge Q = 1 is located in the coordinate origin (x, y, z) = (0, 0, 0),

then we can describe the corresponding density, that is, the three-dimensional

Dirac delta, with the product of three one-dimensional Dirac deltas δ(x), δ(y)

and δ(z):∫
V

δ(x) δ(y) δ(z) dx dy dz = 1, (0, 0, 0) ∈ V (3.14)

To avoid having to write three Dirac deltas, we combine them into one Dirac

delta with a superscript that speci�es the spatial dimension. And in the

argument of the Dirac delta, we write the position vector r = (x, y, z):

δ3(r) := δ(x)δ(y)δ(z) (3.15)

The Dirac delta shifted to the location r0 = (x0, y0, z0) then looks as follows:

δ3(r − r0) := δ(x− x0) δ(y − y0) δ(z − z0) (3.16)

If the three-dimensional delta function appears in the integral in a product with

a scalar three-dimensional function f(r) = f(x, y, z), then the three-dimensional

Dirac delta δ3(r − r0) works in the same way as in the one-dimensional case.

The Dirac delta picks the value f(r0) = f(x0, y0, z0) of the function at

the point r0:∫
V

f(r) δ3(r − r0) dv = f(r0) (3.17)

With the knowledge of the Dirac delta, we can theoretically describe density

singularities (for example point charges and black holes).





4. Vector fields

A vector function F (or vector-valued function) is a vector that depends on the

(Cartesian) coordinates (x, y, z) and has three components in three-dimensional

space:

F (x, y, z) =

Fx(x, y, z)

Fy(x, y, z)

Fz(x, y, z)

 (4.1)

Here, Fx(x, y, z), Fy(x, y, z) and Fz(x, y, z) are three scalar functions and they

represent the three components of the vector function F . Sometimes we also

write brie�y: F (r) = F (x, y, z), where r = (x, y, z) is the position vector.

In theoretical physics, we will mainly work with vector �elds. A vector

function can depend on any coordinates (x, y, z), such as angles. And, if we are

talking about a vector �eld, then (x, y, z) represents the spatial coordinates.

We represent vector functions and vector �elds either with an arrow F⃗ above

the symbol or more compactly, in bold F . The vector �eld could, for example,

represent the electric �eld F = E or a magnetic �eld F = B.
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■ Example 4.1 A two-dimensional vector �eld could look like this:

F (x, y, z) =

[
2x+ 5y

5x

]
(4.2)

Here, Fx (x, y) = 2x + 5y is the �rst component and Fy (x) = 5x is the second

component of the vector �eld. The second component depends only on the

position coordinate x. If we represent 4.2 graphically, the vector �eld looks like

this:

Each point (x, y) is assigned a vector F (x, y). For example, at the point (x, y) =

(1, 1) the vector looks like this: F (1, 1) = (7, 5). Simply insert x = 1 and for

y = 1 into the vector �eld 4.2 to get this example vector. If you insert a large

number of locations in this way, you will get the graphical representation of the

vector �eld 4.2. ■



5. Nabla operator

More: en.fufaev.org/nabla-operator

We will encounter the nabla operator ∇ (inverted large delta) in every

branch of theoretical physics when it comes to multidimensional derivatives,

especially in electrodynamics when we get to know Maxwell's equations. The

three-dimensional Nabla operator is notationally similar to a vector and

looks like this in three-dimensional space when we express it with Cartesian

coordinates (x, y, z):

∇ =

∂x∂y
∂z

 (5.1)

The three components of the Nabla operator are partial derivatives with

respect to x, y and z. We have notated the partial derivatives more compactly

with ∂x instead of ∂
∂x
. This notation is common in theoretical physics. The

single derivatives ∂x, ∂y and ∂z are called di�erential operators. You can apply

a di�erential operator to a function f . The result is the derivative of the function.

For example: ∂x f = ∂f
∂x
.

We can apply the Nabla operator in three di�erent ways to a scalar function f

https://en.fufaev.org/nabla-operator
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or to a vector �eld F :

� As multiplication with a scalar function: ∇f . The result ∇f is called

gradient of the scalar function f .

� As scalar product with a vector �eld: ∇ · F . The result ∇ · F is called

divergence of the vector �eld F .

� As cross product with a vector �eld: ∇×F . The result ∇×F is called

curl of the vector �eld F .

5.1 Gradient
More: en.fufaev.org/gradient

Let's take a look at the �rst application of the nabla operator in the form of

the gradient ∇f of a scalar function f . Here we apply the nabla operator

∇ to the function f . We will encounter the gradient in Maxwell's equations, for

example:

∇f(x, y, z) =

∂x f(x, y, z)∂y f(x, y, z)

∂z f(x, y, z)

 (5.2)

The result 5.2 is called gradient and represents a three-dimensional vector

�eld ∇f with three components:

� The �rst component contains the gradient ∂x f of the function f (x, y, z)

in the x direction.

� The second component contains the gradient ∂y f of the function f (x, y, z)

in the y direction.

� The third component contains the gradient ∂z f of the function f (x, y, z)

in the z direction.

Of course, we can also use a two-dimensional Nabla operator ∇2d, which

only has two components. A two-dimensional gradient of a function f (x, y) then

https://en.fufaev.org/gradient


5.1 Gradient 59

looks like this:

∇2d f(x, y, z) =

[
∂x f(x, y, z)

∂y f(x, y, z)

]
(5.3)

And the one-dimensional Nabla operator ∇1d has only one component.

Applied to a one-dimensional function f (x), the gradient is simply the partial

derivative of the function:

∇1d f(x, y, z) = ∂x f(x, y, z) (5.4)

■ Example 5.1 — Calculating the gradient of a function. Given is a scalar

function f (x, y, z) = x2 + 5xy + z. The gradient of this scalar function is:

∇f(x, y, z) =

2x+ 5y

5x

1

 (5.5)

■

The resulting vector∇f (x, y, z) points at each location (x, y, z) to the steepest

slope of the function f (x, y, z). For example, look at the following plot of a

two-dimensional scalar function f (x, y):
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At each location on the green function, imagine a vector that shows you the

direction of the steepest ascent or descent at that location.

5.2 Divergence
More: en.fufaev.org/divergence

Let's look at the second application of the Nabla operator, namely the

divergence ∇ · F of a vector �eld F . Here we apply the nabla operator ∇
to the vector-valued function F (x, y, z). Just like the gradient ∇f , we will also
encounter the divergence in Maxwell's equations, for example.

For the divergence, we form the scalar product ∇ ·F between the nabla

operator and the vector �eld F :

∇ · F (x, y, z) =

∂x∂y
∂z

 ·

Fx(x, y, z)

Fy(x, y, z)

Fz(x, y, z)

 (5.6)

= ∂x Fx + ∂y Fy + ∂z Fz

In the last step, we omitted the arguments for more compactness. The result

∇ · F of the scalar product is a three-dimensional scalar function. By forming

the gradient, a vector �eld was generated from a scalar function. And by formig

the divergence, we make a scalar function was generated from a vector

�eld. So the other way around!

■ Example 5.2 — Calculate the divergence of a vector field. The following

three-dimensional vector �eld is given:

F (x, y, z) =

2x
3

zy

5xy

 (5.7)

https://en.fufaev.org/divergence
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The divergence of this vector �eld is the following scalar function:

∇ · F (x, y, z) = ∂x(2x
3)︸ ︷︷ ︸

6x2

+ ∂y(zy)︸ ︷︷ ︸
z

+ ∂z(5xy)︸ ︷︷ ︸
0

(5.8)

■

So if a speci�c location (x, y, z) is inserted into the scalar function

∇ ·F (x, y, z), then this function spits out a number. This number is a measure

of the divergence of the vector �eld at the considered location (x, y, z). The

result can be a positive or negative number or even zero. Depending on

whether the number is positive, negative or zero, it has a di�erent physical

meaning.

5.2.1 Positive divergence = source
We assume that we have inserted a speci�c location, for example something like

(x, y, z) = (1, 0, 3), into the result ∇·F (x, y, z) and obtained a positive number:

∇ · F (x, y, z) > 0. Then the location (x, y, z) is a source of the vector �eld

F .

Why do we call the location a source? If we were to enclose this location point

in an imaginary cube, then the vector �eld would mainly point out of the cube.

You can visualize the source as a hole from which the water comes and leaves

the surface of the cube. Even though we can use the divergence to describe a

water source, in this book we use the divergence to describe electric charges. In
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this case, the vector �eld F corresponds to the electric �eld F = E. Then the

source at the location (x, y, z) represents a positive electric charge.

5.2.2 Negative divergence = sink
If, on the other hand, we obtain a negative number after inserting the location

(x, y, z) into ∇ ·F (x, y, z): ∇ ·F (x, y, z) < 0, then we are talking about a sink

of the vector �eld F (x, y, z).

If we enclose the location with an imaginary cube, then the vector �eld �ows

into the surface. We can imagine the sink as a hole into which the water �ows.

To do this, the water must �ow into the cube. If we assume that the vector �eld

is an electric �eld: F = E, then the sink at the location (x, y, z) corresponds to

a negative electric charge.

■ Example 5.3 — Sink of a vector field. Let's take a look at the following vector

�eld:

F (x, y, z) =

2xy
4

 (5.9)

Let's calculate the divergence of this vector �eld:

∇ · F (x, y, z) = ∂x(−2x)︸ ︷︷ ︸
−2

+ ∂y(y)︸ ︷︷ ︸
1

+ ∂z(4)︸ ︷︷ ︸
0

= −1 (5.10)
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The vector �eld under consideration has a constant, negative divergence at every

location (x, y, z). This means that no matter which location is used for (x, y, z),

each location has a negative divergence with the value -1. Sinks of the vector

�eld 5.9 are distributed everywhere. If the vector �eld were an electric �eld

F = E, then this result would mean that a negative electric charge is smeared

everywhere in space.

■

5.2.3 Divergence-free vector field
Now assume that we get zero after we have inserted a concrete location (x, y, z)

into the divergence �eld: ∇ · F (x, y, z) = 0. Then the location (x, y, z) is

divergence-free.

If we enclose this location with a cube surface, then the vector �eld neither

�ows out nor in. Or just as much of the vector �eld points into the surface as

points out, so that the two opposite contributions cancel each other out and the

divergence is net zero.

We can imagine this as if the cube enclosed a source (e.g. water source) and

a sink (e.g. drain), so that the amount of water �owing in and water �owing

out cancel each other out. If we interpret the vector �eld as the electric �eld

F = E, then there could be an electric dipole at the considered divergence-free

location. It consists of a positive (source) and negative (sink) charge.

■ Example 5.4 — Divergence-free vector field. Let's calculate the divergence
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at the location (x, y, z) = (1, 1, 1) of the following vector �eld:

F (x, y, z) =

−2x

0.5y2

0.5z2

 (5.11)

Let's calculate the divergence of this vector �eld:

∇ · F (x, y, z) = ∂x(−2x)︸ ︷︷ ︸
−2

+ ∂y(0.5y
2)︸ ︷︷ ︸

y

+ ∂z(0.5z
2)︸ ︷︷ ︸

z

(5.12)

= −2 + y + z

Insert the location (1, 1, 1) into the calculated scalar function:

∇ · F (1, 1, 1) = −2 + 1 + 1 = 0 (5.13)

The divergence of the vector �eld at this location is zero. There is therefore

neither a source nor a sink or an ideal electric dipole at the location (1, 1, 1). ■

5.3 Curl
As with divergence (scalar product ∇ · F ), we also apply the nabla operator to

a vector �eld F in the case of curl (cross product ∇× F ):

∇× F (x, y, z) =

∂x∂y
∂z

 ×

Fx(x, y, z)

Fy(x, y, z)

Fz(x, y, z)

 (5.14)

=

∂y Fz − ∂z Fy

∂z Fx − ∂x Fz

∂x Fy − ∂y Fx


In the last step, we omitted the arguments for more compactness. The result

of the cross product is again a vector �eld with three components. The curl

∇× F (x, y, z) of a vector �eld thus gives us another vector �eld.
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We can visualize the curl∇×F (x, y, z) of the vector �eld at the location (x, y, z)

actually as the name tells us, as the circulation of the vector �eld around

the location (x, y, z).

■ Example 5.5 — Calculate the curl of a vector field. Let us again consider the

following vector �eld at the location (1, 1, 1):

F (x, y, z) =

2x
3

zy

5xy

 (5.15)

The vector �eld F (1, 1, 1) at this location is:

F (1, 1, 1) =

21
5

 (5.16)

The curl of the vector �eld is:

∇× F =

 ∂y(5xy)− ∂z(zy)

∂z(2x
3)− ∂x(5xy)

∂x(zy)− ∂y(2x
3)

 =

5x− y

−5y

0

 (5.17)

Inserting the location (1, 1, 1) gives the curl vector:

∇× F (1, 1, 1) =

 4

−5

0

 (5.18)

■

Hopefully you can now imagine what the cross product ∇× F with the vector

�eld F means. We will encounter curl in the chapter on Maxwell's equations.





6. Gauss Divergence Theorem

We will encounter the Gauss Divergence Theorem in Maxwell's equations. This

theorem states that the sum of the sources and sinks in a volume is equal to the

�ow through the volume surface. Mathematically speaking:∫
V

(∇ · F ) dv =

∮
A

F · da (6.1)

Please what? You're probably asking yourself. Don't worry. We break down the

Divergence Theorem into its components so that you understand it one hundred

percent.

6.1 Surface Integral in the Divergence Theorem
Let's �rst look at the right-hand side of the Divergence Theorem 6.1, namely

the surface integral:∮
A

F · da

The A stands for a surface that encloses any volume, for example the surface

of a cube, a sphere or the surface of any three-dimensional shape you can think

of. The small circle around the integral is intended to indicate that this surface
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must ful�ll a condition: It must be closed, that is, it must not contain any

holes, so that the equality in 6.1 is mathematically ful�lled. The surface A is

therefore a closed surface.

The F is any vector �eld: F = F (x, y, z), that is, a vector with three

components Fx(x, y, z), Fy(x, y, z) and Fz(x, y, z), as shown in Eq. 4.1. For

example, the vector �eld could represent an elecetric �eld F = E or a

magnetic �eld F = B.

The da is an in�nitesimal surface element, that is, an in�nitely small area

of the surface A under consideration. As you may have noticed, the da element

is shown in bold, so it is a vector with three components dax, day and daz. The

vector naturally also has a magnitude and a direction. The magnitude |da| = da

indicates the area of this small piece of surface. The da vector is orthogonal to

the surface area and points out of the surface.

The point · in F · da is the scalar product (also called dot product). You

should be familiar with this vector operation from basic mathematics. The

scalar product is a way of multiplying two vectors together. In the Divergence

Theorem, the scalar product is therefore formed between the vector �eld F and

the da area. Written out, the scalar product looks like this:

F · da = Fxdax + Fyday + Fzdaz (6.2)
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The task of this scalar product is to pick out the part of the vector �eld F at

point (x, y, z) that is perpendicular to the surface, i.e. that points parallel to

the da surface element. How can we understand this? Mathematically, we can

split the vector �eld F = F|| + F⊥ into two parts:

� In the component F||, which points parallel to the da surface element.

� In the component F⊥ that points perpendicular to the da surface

element.

The scalar product F · da at the location (x, y, z) on the surface eliminates

the perpendicular part of the vector �eld and leaves only the component of the

vector �eld parallel to the element:

F · da =
(
F|| + F⊥

)
· da (6.3)

= F|| · da + F⊥ · da︸ ︷︷ ︸
0

= F|| · da

Why again is the perpendicular component zero? Because the scalar product of

two perpendicular vectors F and da is mathematically zero.

The scalar product F · da thus ensures that in the Divergence Theorem we

only take the component F|| of the vector �eld that leaves or enters the surface
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perpendicularly. Everything that �passes by the surface� (by this I mean the

component F⊥ parallel to the surface) is omitted in the Divergence Theorem.

Then, on the right-hand side of the Divergence Theorem 6.1, the scalar products

F (x, y, z) · da(x, y, z) are summed up for each point (x, y, z) on the surface A

using the integral in 6.1.

Let us brie�y denote the right-hand side of the Divergence Theorem by Φ:

Φ =

∮
A

F · da (6.4)

The surface integral therefore results in a number Φ, which is a measure of how

much of the vector �eld F �ows in or out of the surface A. The surface integral

is the �ux Φ of the vector �eld F from the surface A. In the chapter on

Maxwell's equations, we will get to know the electric and magnetic �ux.

6.2 Volume integral in the Divergence Theorem
Let us now look at the left-hand side of the Divergence Theorem 6.1, namely at

the volume integral:∫
V

(∇ · F ) dv (6.5)
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The V stands for a volume, but not just any volume, it is the volume that is

enclosed by the surface A. For example, if A is the surface of a cube, then

V is the volume of this cube. The dv is an in�nitesimal volume element,

that is, an in�nitely small volume piece of the volume V .

In the integrand ∇·F of the volume integral, ∇ stands for the nabla operator,

which we got to know in the chapter 5. Although this operator is not a vector

from a mathematical point of view, it looks like a vector. An operator such as

the nabla operator is only useful if it is applied to a �eld. And this also happens

in the integrand ∇ · F . The nabla operator ∇ is applied to the vector �eld

F by forming the scalar product between the nabla operator and the vector

�eld. Written out, this scalar product corresponds to the sum of the derivatives

of the vector �eld with respect to the coordinates x, y and z:

∇ · F = ∂xFx + ∂yFy + ∂zFz (6.6)

The integrand ∇ · F is therefore the divergence of the vector �eld F . We

learned what divergence is in the chapter 5.2. The result ∇ · F is no longer a

vector, but a scalar that can be either positive, negative or zero:

� If the divergence at location (x, y, z) is positive: ∇·F (x, y, z) > 0, then

there is a source of the vector �eld at the location. In electrodynamics,

the source corresponds to a positive charge.
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� If the divergence at location (x, y, z) is negative: ∇·F (x, y, z) < 0, then

there is a sink of the vector �eld at the location. In electrodynamics,

the source corresponds to a negative charge.

� If the divergence at location (x, y, z) is zero: ∇ · F (x, y, z) = 0, then

this location is neither a sink nor a source of the vector �eld. The

vector �eld does not enter or leave the surface or the vector �eld enters as

much as it leaves, so that the two parts cancel each other out.

Then, in the volume integral 6.5, the divergences ∇×F (all sources and sinks)

at each location (x, y, z) within the volume V are summed up with an integral.

The volume integral 6.5 in the Divergence Theorem is a number that measures

how many sinks and sources can be found within the volume V .

Let us summarize the statement of the Divergence Theorem 6.1:

� The volume integral on the left-hand side describes the sum of sources

and sinks of the vector �eld within a volume V :∫
V

(∇ · F ) dv

� The area integral on the right-hand side describes the �ux Φ of the
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vector �eld through the surface A of this volume V :∮
A

F · da

According to the Divergence Theorem, both integrals are equal.

The Gauss Divergence Theorem therefore states: The sum of the sources

and sinks of a vector �eld F within a volume V corresponds to the

�ux Φ through the surface A of this volume.





7. Stokes’ Curl Theorem

More: en.fufaev.org/stokes-curl-theorem

Besides the Divergence Theorem, we will also need the Stokes' Curl Theorem

(or shorter: Curl Theorem) in order to understand Maxwell's equations in depth.

The Curl Theorem states that the curl of a vector �eld within a surface

is equal to the curl of the vector �eld along the edge of this surface.

Expressed mathematically, this theorem looks like this:∫
A

(∇× F ) · da =

∮
L

F · dl (7.1)

If you have understood the Divergence Theorem, the Curl Theorem should no

longer seem totally cryptic to you. You already know the vector �eld

F (x, y, z). It depends on three spatial coordinates and has three components

as a vector. The scalar product F · dl, but also the nabla operator ∇ and

the in�nitesimal surface da should be familiar to you if you have read the

chapter 6 on the Divergence Theorem.

https://en.fufaev.org/stokes-curl-theorem
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7.1 Line integral in the Curl Theorem
Let us �rst consider the line integral on the right-hand side of the Curl Theorem

7.1, namely:∮
L

F · dl

The symbol L on the integral represents a line in three-dimensional space.

The circle on the integral symbol indicates that this line must be closed, which

means that its beginning and end are connected. We refer to such a closed line

as a loop for short.

The dl is an in�nitesimal line element of the line, in other words an in�nitely

small piece of the line. You should also notice here that the dl line element is

shown in bold, which means it is a vector with three components: dlx, dly and

dlz. The magnitude dl of the line element indicates the length of dl, while its

direction points along the line.

Then, on the right-hand side, the scalar product F ·dl is formed between a vector
�eld and the line element. The scalar product looks like this when written out:

F · dl = Fx dlx + Fy dly + Fz dlz (7.2)

You have already learned what the purpose of this scalar product is in the

chapter 6 on the Divergence Theorem. Here is a quick recap: First, divide the
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vector �eld F into two parts:

� Into the component F||, which points parallel to the dl line element.

� Into the component F⊥ that points perpendicular to the dl line

element.

The scalar product F · dl eliminates the perpendicular part of the vector

�eld F and leaves only the part F|| of the vector �eld that is parallel to the dl

element. The scalar product of two perpendicular vectors F⊥ and dl is

mathematically zero:

F · dl =
(
F|| + F⊥

)
· dl (7.3)

= F|| · dl + F⊥ · dl︸ ︷︷ ︸
0

= F|| · dl

Since the line element dl is parallel to the line at every point of the line, in the

scalar product F ·dl only the parallel component F|| of the vector �eld remains,

which of course also runs along the line L. All other components of the vector

�eld are absent.

The scalar products for each point (x, y, z) on the line L are then added up on

the right-hand side of the Curl Theorem using the line integral.
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Let us brie�y denote the right-hand side of the Curl Theorem by U :

U =

∮
L

F · dl (7.4)

The line integral therefore results in a number U , which is a measure of how

much of the vector �eld runs along the line. Because the line L is closed, the

summation returns to the same point (x, y, z) where the summation began. The

closed line integral U therefore indicates how much of the vector �eld F

circulates along the closed line L.

7.2 Surface integral in the Curl Theorem
Let us now consider the surface integral on the left-hand side of the Curl

Theorem 7.1, namely:∫
A

(∇× F ) · da

The surface A appears in the area integral. In contrast to the surface integral

with a circle around the integral sign, as in the Divergence Theorem, here we

consider an open surface. It therefore does not include a volume. This is

merely a surface that is enclosed by the loop L.

The vector da = (dax, day, daz) represents an in�nitely small element of the

surface A and is perpendicular to every location point (x, y, z) on this surface.
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The cross product ∇×F between the nabla operator and the vector �eld also

appears in the surface integral. You should already know what the cross product

means from the basics of mathematics. In addition to the scalar product, the

cross product is the second way to multiply vectors with each other. The cross

product ∇× F is the curl of the vector �eld F .

In contrast to the scalar product, the result of the cross product ∇ · F is again

a vector �eld that is perpendicular to F . Why perpendicular? Because

that is the property of the cross product! If we write out the cross product in

concrete terms, the result vector ∇× F looks like this:

∇× F =

∂yFz − ∂zFy

∂zFx − ∂xFz

∂xFy − ∂yFx

 (7.5)

What does curl mean?

The vector ∇ × F (x, y, z) indicates how strongly the vector �eld F

circulates at the point (x, y, z), which is located within the area A.

Then the scalar product (∇× F ) ·da between the curl vector �eld (∇× F ) and

the in�nitesimal surface element da is formed inside the surface integral of the

Curl Theorem. As we already know, the scalar product is only used to pick out

the component (∇× F )|| of the curl vector �eld that runs parallel to the surface

element:
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(∇× F ) · da =
(
(∇× F )|| + (∇× F )⊥

)
· da (7.6)

= (∇× F )|| · da + (∇× F )⊥ · da︸ ︷︷ ︸
0

= (∇× F )|| · da

Since the surface element da(x, y, z) at a point (x, y, z) is perpendicular to the

respective piece of surface, the scalar product ?? only picks out the component of

the vector �eld dF that is also perpendicular to the surface element or, in other

words, the �eld component that is parallel to the da(x, y, z) vector. Therefore,

only the component (∇× F )|| · da remains in the surface integral.

The scalar products (∇× F )||(x, y, z) · da(x, y, z) are then summed up on the

left-hand side of the Curl Theorem using the surface integral at each point

(x, y, z).
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Let us now summarize the statements of the surface integral (right-hand side)

and line integral (left-hand side) of the Stokes' Curl Teorem:

� On the left-hand side, the curl (∇× F ) of the vector �eld F is summed

up at each individual location within the area A:∫
A

(∇× F ) · da

� On the right-hand side, the vector �eld F is summed up along the

boundary L of the surface A. The right-hand side therefore corresponds

to a number that measures the curl of the vector �eld on the boundary:∮
L

F · dl

Both integrals should be equal according to the Curl Theorem.

The Stokes' Curl Theorem thus clearly states: The total curl of a vector

�eld F within the surface A corresponds to the curl of the vector �eld

along the edge L of this area.





8. Fourier Series

More: en.fufaev.org/fourier-series

You are certainly familiar with the Taylor expansion, with which we can

approximate a function f(x) at a point x = x0 using a simpler Taylor series.

Let us denote the approximation of the exact function as f . The more terms

we take in the Taylor series, the better the approximation f in the vicinity of

the selected point x0.

As you can see in the image below, the Taylor series, represented by ftaylor, is a

good approximation of the function f in the immediate vicinity of x0. However,

if we move further away from the point, we see that the Taylor series is not a

good approximation there. The Taylor expansion is therefore a method with

which we can approximate a function only locally.

However, if it is important for us to approximate a function f on a whole

interval, then we need a Fourier series of the function. As we will see,

https://en.fufaev.org/fourier-series
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the Fourier series is a linear combination of simple periodic basis functionsn

(e1, e2, e3, e4, ...) such as cosine and sine or complex exponential functions, which

in sum (series) can approximate the function f in a chosen interval. In the

following, we assume a interval of length L.

8.1 The concept of Fourier series
We can represent a vector v that lives in an n-dimensional vector space as a

linear combination of basis vectors {ek} that span the vector space:

v = v1e1 + v2e2 + v3e3 + ... + vnen =
k

+
n

vkek (8.1)

You should be familiar with the representation of the vector as a linear

combination from linear algebra! Using a basis {ek} we can represent every

possible vector v in this vector space. Here vk are the components of the

vector in the chosen basis. The choice of basis is not unique, therefore

the components vk can be di�erent. By choosing a di�erent basis, the vector

has di�erent components! You should already know this.

We can also apply this concept of linear combination to in�nite-dimensional

vectors. A function f , for example from the illustration above, can be

interpreted as an in�nite-dimensional vector f , which we can represent as a

linear combination. The components vk of a �nite vector become Fourier
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coe�cients f̂k if we represent a function and not a �nite vector as a linear

combination:

f = f̂1e1 + f̂2e2 + f̂3e3 + ... + vnen (8.2)

=
k

+
n

f̂kek

If we represent a function f as a linear combination 8.4 of basis functions ek,

then we denote the sum 8.4 as Fourier series of the function f . For a linear

combination for a function, the basis vectors ek are more appropriately called

basis functions. In optics, the basis functions are also called Fourier modes.

When considering the function f as a vector, the function values f(x0), f(x1),

f(x2) and so on until f(xn) = f(x0 + L), represent the components of f . We

can imagine the function f as a column vector:

f =



f(x0)

f(x1)

f(x2)

.

.

.

f(xn)


(8.3)

Of course, the representation is not exact. The argument x of the function f(x)

is real and there are therefore theoretically in�nitely many values, even

between x0 and x1.

We have omitted all these values in the representation of the function as a

column vector 8.3. The column vector is therefore only an approximation vector

for the function f . By the way: In this way, as in 8.3, we represent a quantum

mechanical wave function as a state vector in computer physics.
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8.2 Fourier coefficients
We can determine the Fourier coe�cients in the same way as in linear algebra.

How do we do this again in linear algebra? To get the k-th component of a

�nite-dimensional vector v, we have to form the scalar product between the

k-th basis vector and the vector v:

vk = ek · v (8.4)

= ek0v0 + ek1v1 + ... + eknvn

=
n

+
j

ekjvj

In the last step, we have written out the scalar product a little more compactly

with a summation sign and selected the summation index as j. Here, ek0 to ekn

are the components of the basis vector ek = [ek0, ek1, ..., ekn].

If we are not working with �nite-dimensional vectors but with functions, then

we have to form the scalar product between the k-th basis function and

the function f to obtain the k-th Fourier coe�cient of f :

f̂k = ek · f = ⟨ek|f⟩ =



e(x0)

e(x1)

e(x2)

.

.

.

e(xn)


·



f(x0)

f(x1)

f(x2)

.

.

.

f(xn)


(8.5)

To indicate that we may be working with an in�nite-dimensional vector space

here, we can call the operation 8.5 not scalar product but inner product and use

it as physicist in the Bra-Ket Notation ⟨ekf⟩. We learn Bra-Ket Notation in

the chapter 16.

Note that we represent the vectors in 8.5 up to the n component because, as
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already mentioned, with a Fourier series we can only work with functions in a

certain interval. Our chosen interval (x0, xn) = (x0, x0 + L) has the length L.

Let's write out the inner product 8.5 as a sum:

f̂k = ⟨ek|f⟩ ≈
xn

+
x=x0

ek(x)f(x) (8.6)

You have certainly seen the approximation sign in Eq. 8.6. The sum is

therefore only an approximation of the Fourier coe�cient f̂k. Can we represent

the Fourier coe�cients f̂k exact? It's quite simple! Since we are dealing with

a continuous summation in the case of exact Fourier coe�cients, we must

replace the summation sign with an integral. So instead of summing

discretely over x as in 8.6, we integrate over x:

f̂k = ⟨ek|f⟩ =

∫ xn

x0

e∗k(x)f(x)dx (8.7)

We have only made a small mathematical upgrade in the integral. The basis

function e∗k(x) has been complex conjugate. We can also omit the asterisk if

we are working with real basis functions, as e∗ = e applies to real basis functions.

However, to allow complex basis functions, we must append an asterisk to the

basis function. The asterisk in the case of complex-valued functions

is important so that the integral 8.7 ful�lls the properties of an inner

product.

So, now we know how we can calculate the Fourier coe�cients with the integral

8.7 and how the integral formula 8.7 comes about in the �rst place.

8.3 Fourier basis
Now let's get to know the basis functions. Which basis functions ek can we

use in the Fourier series of f?

f =
n

+
k

f̂kek (8.8)
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All functions that ful�ll the properties of a basis! In order for a set of vectors

or, as in our case, a set of functions {ek} to be called a basis, these functions

must ful�ll two conditions:

� If we take two basis functions ek and em from the set {ek}, then they

must be orthonormal to each other, in other words orthogonal and

normalized. This property can be expressed with the Kronecker delta:

⟨ek|em⟩ = δkm.

� The set {ek} of basis functions must be complete. In other words, they

must span the space in which the functions f live. We must be able to

represent each function f exactly with the set {ek}.

Only when these two properties are ful�lled by the functions {ek} can we take

these functions as basis functions and thus represent a function f as a Fourier

series 8.8.

A typical basis {ek} used in physics are the complex exponential functions:

ek =
1√
L
eikx (8.9)

The factor 1√
L
ensures that the basis functions are normalized, that is, they

exactly ful�ll the necessary 1. property. In the context of physics, especially

in optics, we refer to k as wavenumber. And remember that e in eikx is the

Euler number and not the label of the basis function ek! I'm just saying...

Depending on what we use for the wavenumber k, we get a di�erent basis

function in 8.9. Of course, we can also choose a di�erent basis for the Fourier

series, such as cosine and sine functions. We are free to choose a basis.

Here we have chosen complex exponential functions as a basis because they

can be written in a nice compact way, especially for the explanation of the

Fourier series.

The Fourier series 8.8 of the function f would look like this in the exponential
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basis 8.9:

f =
n

+
k

f̂kek =
1√
L

n

+
k

f̂k e
ikx (8.10)

What can we do with the Fourier series 8.10 in the exponential basis? As I said,

we can use it to approximate any function f in an interval. Let's take a look at

a concrete example, then you'll know what I mean.

8.4 Example: Fourier series for the sawtooth

function
As an example, let us consider the sawtooth function in the interval (0, 1):

f =

{
− x (0, 0.5)

1− x (0.5, 1)
(8.11)

This saw function looks like this:

Let's choose the exponential basis functions as our basis for the Fourier series

of the sawtooth function:

f =
1√
L

n

+
k

f̂k e
ikx

The total interval length is L = 1. This means that the normalization factor for
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exponential basis functions is also 1:

f =
n

+
k

f̂k e
ikx (8.12)

When determining Fourier series, we always have to do two things:

� Choose a basis and insert it into the Fourier series. We have already

done this in eq. 8.12.

� Calculate the Fourier coe�cients f̂k with the integral 8.7 and insert it

into the Fourier series 8.12. We determine the k-th Fourier coe�cient 8.7

with the inner product between the k-th basis function and the sawtooth

function f :

f̂k =

∫ xn

x0

e∗k(x) f(x) dx (8.13)

=

∫ 1

0

e−ikx f(x) dx (8.14)

Note that the exponential basis function must be complex conjugate in the

integral. This is where the minus sign in the exponent of the exponential function

comes from. And the integration limits x0 = 0 and xn = 1 are our free decision.

We want to approximate the sawtooth function in this region.

Now it's up to you to solve the integral 8.14 to determine the Fourier coe�cients

concretely. I can't do it, so I'll leave it to you as an exercise.

In any case, here is the solution we need to illustrate it right away:

f̂k =
1

ik
e−ik/2 (8.15)

Since we have not entered a speci�c value for the wavenumber k in 8.15, we have

determined all Fourier coe�cients f̂k. For a di�erent k value, we get a di�erent

Fourier coe�cient in Eq. 8.15.

Let's just insert the Fourier coe�cients 8.14 into the Fourier series 8.12 and
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combine the two exponential functions:

f =
n

+
k

f̂k e
ikx (8.16)

=
n

+
k

1

ik
e−ik/2eikx (8.17)

=
n

+
k

1

ik
eik(x−0.5) (8.18)

=
∞
+

m=−∞

1

i2πm
ei2πm(x−0.5) (8.19)

In the last step, we selected periodic boundary conditions for k = 2πm/L, where

m = ... − 2,−1, 0, 1, 2, ... takes whole numbers. We therefore sum over both

positive and negative m.

We can decide up to which mmax we want to sum in the Fourier series 8.19 of the

sawtooth function. The higher we choose mmax, the better our approximation

of the function f will be.

Look at the plots for the approximationmmax = 1 and for a better approximation

mmax = 20:

With this Fourier series for the sawtooth function, we have basically gained two

things:

� We can now sum the series up to a certain maximum value: m = mmax

and thus obtain a continuously di�erentiable good approximation for

the sawtooth function.

� Since we have determined the Fourier coe�cients, we know which m
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values are contained in the sawtooth function (m = 0, for example, is not

included). We therefore know which building blocks (basis functions) the

sawtooth function is composed of. This breaking down of the function

into individual components is known as Fourier analysis.
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9. Action Functional

More: en.fufaev.org/euler-lagrange-equation

The Euler-Lagrange equation is a powerful tool with which we can set up

di�erential equations (which you should be familiar with) for a speci�c

problem. We will encounter the Euler-Lagrange equation not only in

mechanics, but in all areas of theoretical physics. Let's �rst look at the

motivation for this equation.

Let us consider a particle in the gravitational �eld that is thrown vertically

upwards from the height h(t1) = 0 at the time t1 = 0. Marked as point A in the

following image. It moves straight along a spatial direction and arrives on the

ground at the same location h(t2) = h(t1) = 0 at time t2 (marked as point B in

the image):

https://en.fufaev.org/euler-lagrange-equation
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The connection between A and B, that is, the trajectory h(t) must be a

parabola in this problem. But why is this trajectory a parabola and not some

other trajectory? Why does nature or the particle between points A and B

choose this path of all paths? And not for any other path?

In order to answer this question, we need a physical quantity called action,

which is abbreviated with an S and has the unit Js (Joule second).

We can assign an action S[h] to each of the conceivable trajectories h. The

action takes an entire function h in the argument and outputs a number S[h],

namely the value of the action for the corresponding function. For example,

some trajectory h1 could have the value S[h1] = 3.5 Js, another trajectory h2

could have the value S[h2] = 5.6 Js and the parabolic trajectory h could have

the value S[h] = 2 Js:

So now back to the question: Why a parabola? Experience shows that nature
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follows the principle of extreme action. This means that if we calculate

the corresponding action S for all possible trajectories h(t), h1(t), h2(t) and so

on between points A and B, then nature takes the value of the action that is

maximum, minimum or a saddle point.

All other actions are out of the question for nature. Nature chooses one of these

extremal actions. This is exactly what "extreme" means. Which of the extreme

paths (minimum, maximum, saddle point) nature actually takes depends on the

problem under consideration.

So we can answer the question: Why does the particle thrown upwards in the

gravitational �eld take the path of the parabola in the space-time diagram?

Because the parabolic trajectory h has the smallest action S[h]!

But how do we actually calculate the value of the action? For this we

need the lagrange function L(t, h, ḣ). It depends on the time t, on the function

value (position) h(t) and on the time derivative (velocity) ḣ(t) at time t. The

Lagrange function has the unit of energy, that is, Joule (J).

If we integrate the Lagrange function L over the time t between t1 and t2, we

get a quantity that has the unit Joule second. We interpret this as the action

S:

S[h] =

∫ t2

t1

dt L(t, h, ḣ) (9.1)

The letter q is usually used instead of h and q̇ instead of ḣ and is called q

generalized coordinate and the derivative q̇ generalized velocity. The
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generalized coordinate (the trajectory you are looking for) does not necessarily

have to be the height h above the ground. For example, it can represent an

angle q = φ or any other quantity that may depend on the time t.

S[q] =

∫ t2

t1

dt L(t, q, q̇) (9.2)

With this formula for the action functional we can calculate the value S[q]

of the action for every possible trajectory q that the particle can take. We only

need to determine the Lagrange function L.

There are an in�nite number of possible trajectories that a particle can take from

A to B. Do I really have to calculate an in�nite number of action functionals

9.2? No, there is a faster way to �nd the trajectory with the most extreme

action and for this we need the Euler-Lagrange equation.



10. Euler-Lagrange Equation

Of course, it is totally cumbersome to calculate the action functional 9.2 for all

possible trajectories and to take the trajectory that yields the smallest value of

the integral. To save us this huge task, the Euler-Lagrange equation comes

into play:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (10.1)

This is one of the most important equations in physics. It is best to

memorize it immediately. The derivation of the Euler-Lagrange equation is

based on the de�nition of the action functional 9.2 and the principle of extremal

action. In this chapter, we do not want to know how to derive the Euler-Lagrange

equation, but rather how to use it to determine the desired extreme trajectory

h.

The Euler-Lagrange equation 10.1 contains the partial derivative ∂L
∂q̇

of the

Lagrange function with respect to the generalized velocity q̇. This derivative is

also referred to as generalized momentum and is abbreviated as p. You
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may also encounter the Euler-Lagrange equation in the following form:

∂L

∂q
− dp

dt
= 0 (10.2)

We call p �generalized momentum� because this must not necessarily be

mechanical momentum. p can also represent a torque, for example. The

generalized momentum p is then di�erentiated with respect to time t in the

Euler-Lagrange equation.

If we rearrange the Euler-Lagrange equation 10.2 with respect to the time

derivative of the momentum, we can read from it whether the momentum is

conserved:

dp

dt
=

∂L

∂q
(10.3)

For the momentum to be conserved, the time derivative of the momentum must

disappear. We therefore only have to calculate whether ∂L
∂q

is zero, then the

generalized momentum is obtained.

Using the form 10.3, we can also read o� a possible interpretation of the

Euler-Lagrange equation. It is a condition for the conservation of

generalized momentum.

To be able to use the Euler-Lagrange equation at all, we need to know the

Lagrange function L for a chosen system.

10.1 Lagrange function
The Lagrange function L is a scalar function that cannot be derived for any

problem, but can only be guessed or motivated. If you think you have

discovered a suitable Lagrange function for a problem, be it from quantum

mechanics, classical mechanics or relativity, then you can easily use the

Euler-Lagrange equation to check whether the Lagrange function you have
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found correctly describes your problem or not. If you want to �nd the �Theore

of Everything� formula that unites quantum mechanics with the general

theory of relativity, then you should derive or dream up the corresponding

Lagrange function.

In classical mechanics, the Lagrange function is the di�erence between the

kinetic energy Wkin and the potential energy Wpot of a particle:

L(t, q, q̇) = Wkin(t, q, q̇) − Wpot(t, q, q̇) (10.4)

So if we know the kinetic and potential energy of a particle, we can determine

the Lagrange function 10.4 of mechanics and then use it in the Euler-Lagrange

equation 10.1.

10.2 How To: Euler-Lagrange equation
Let's take a look at our example in the introduction, namely how we can calculate

the parabola using the Lagrange function 10.4 and the Euler-Lagrange equation

10.1. To do this, we must always carry out the following �ve steps:

10.2.1 First step: Set generalized coordinates
First of all, we need to know what q and q̇ actually represent. In our example,

q = h and q̇ = v, where v is the velocity of the thrown particle. Velocity is

nothing other than the time derivative of the trajectory function, in other words

v = ḣ.

10.2.2 Second step: Set up the Lagrange function
Next, we need to specify the Lagrange function 10.4 by giving the kinetic energy

Wkin and the potential energy Wpot of the particle in the gravitational �eld as a

function of q and ḣ. The kinetic energy Wkin of the thrown particle is given by

Wkin =
1

2
mḣ2 (10.5)

Here m is the mass of the particle. The potential energy Wpot of the particle in
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the gravitational �eld is given by

Wpot = mg h (10.6)

The Lagrange function L for our problem is thus:

L =
1

2
mv2 − mg h (10.7)

10.2.3 Third step: Calculate derivatives
Now we can use the Lagrange function 10.7 to calculate the derivatives of the

Lagrange function occurring in the Euler-Lagrange equation 10.1:

∂L

∂h
− d

dt

∂L

∂v
= 0 (10.8)

Di�erentiate the Lagrange function 10.7 with respect to h:

∂L

∂h
=

∂L

∂h

(
1

2
mv2 − mg h

)
(10.9)

=
∂L

∂h

(
1

2
mv2

)
− ∂L

∂h
(mg h) (10.10)

= −mg (10.11)

Di�erentiate the Lagrange function 10.7 with respect to v:

p =
∂L

∂v
=

∂L

∂v

(
1

2
mv2 − mg h

)
(10.12)

=
∂L

∂v

(
1

2
mv2

)
− ∂L

∂v
(mg h) (10.13)

= mv (10.14)
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Di�erentiate the calculated momentum p = ∂L
∂v

with respect to time:

dp

dt
=

d

dt
(mv) (10.15)

= m v̇ (10.16)

= mḧ (10.17)

Let's insert the calculated derivatives 10.11 and 10.14 into the Euler-Lagrange

equation:

−mg − mḧ = 0 (10.18)

Let's cancel the mass and bring ḧ to the right-hand side of the equation:

−g = ḧ (10.19)

What we have obtained in 10.19 is a di�erential equation for the desired

trajectory h(t). Hopefully you can see the usefulness of the Euler-Lagrange

equation here: It is there to set up di�erential equations for the

extremal trajectory h(t).

Note that our example is a one-dimensional problem and therefore we only

got one di�erential equation. For more complex multidimensional problems,

we get several di�erential equations.

10.2.4 Fourth step: Solve the differential equations
Now we have to solve the di�erential equation 10.19 set up using the Euler-

Lagrange equation. We can do this by integrating both sides twice. The solution

is the unknown extremal trajectory:

h(t) = −1

2
g t2 + C1 t + C2 (10.20)

Here, C1 and C2 are the integration constants.
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10.2.5 Fifth step: Set boundary conditions
The last step is to insert the constraints of the problem under consideration into

the solution of the di�erential equation and determine the unknown constants

C1 and C2.

In our problem, we have thrown the particle from the height h1 = 0 at the time

t1 = 0. The �rst boundary condition is therefore: h(0) = 0. If we insert it

into the solution 10.20, we get the second constant of integration: C2 = 0. This

simpli�es the solution:

h(t) = −1

2
g t2 + C1 t (10.21)

We know that the trajectory h(t) ends at point B. Point B corresponds to

the time t2 at which the particle landed on the ground at h(t2) = 0. This is

the second constraint. If we insert this boundary condition into 10.21, we can

determine the �rst constant of integration: C1 =
1
2
g t2. We are done!

The required extremal trajectory is therefore given by :

h(t) = −1

2
g t2 + C1 t +

1

2
g t2 t (10.22)

This trajectory has the smallest value S[h] of the action. If we plot the result

10.22 in the space-time diagram, we get a parabola.

Let us summarize: The Euler-Lagrange equation helps us to set up

di�erential equations for a desired trajectory between two �xed

points. The solution of these di�erential equations yields the exact shape of

the trajectory that is allowed by nature.
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11. The Electric Vector Field

Consider an electrically charged sphere with a large source charge Q and a

sphere with a small test charge q. The test charge is at a certain point in time

at a distance r from the source charge. The source charge exerts an electric

force Fe on the test charge, which is given by the Coulomb's law:

Fe =
1

4πε0

Qq

r2
(11.1)

Here, 4πε0 is a constant pre-factor with the vacuum permittivity ε0, which

ensures the correct unit of force on the right-hand side of Coulomb's law, namely

the unit Newton (N).

What if we know the value of the big charge Q and want to know what force this
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big charge exerts on another small charge q? But we don't know the exact value

of this small charge. Or we deliberately leave this value open and only want to

consider the electric force that would be exerted by the big charge if we place

the test charge q near it. To do this, q must somehow be eliminated from the

Coulomb's law. We achieve this by dividing the Coulomb's law on both sides

by q so that the test charge on the right-hand side disappears:

Fe

q
=

1

4πε0

Q

r2
(11.2)

The quotient between force and charge on the left-hand side is de�ned as electric

�eld E of the source charge Q:

E =
1

4πε0

Q

r2
(11.3)

So what is the electric �eld? The electric �eld E indicates the electric force

that WOULD act on a test charge q if it were placed at a distance r

from the source charge Q.

We have called Q the source charge to indicate that it is the source of the

electric �eld. And so that Q is really the only source, we have chosen the test

charge q to be very small.

The electric �eld in Eq. 11.3 is only the magnitude, that is, the value of the
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electric �eld. For the cherry on the cake of electrodynamics, Maxwell's equations,

we need the electric �eld as a vector quantity in order to also take into account

the direction of the electric �eld at all locations in space. Therefore, the

electric �eld E must be transformed into a vector E. Vectors are shown in this

book in bold.

The electric �eld E as a vector in three-dimensional space has three components

E1,E2 and E3.

E =

E1

E2

E3

 (11.4)

The �rst component E1(x, y, z) depends on the spatial coordinates (x, y, z) and

it indicates the magnitude of the electric force that would act on a test charge

along the x-axis if the test charge were placed at the location (x, y, z). The same

applies to the other two �eld components E2(x, y, z) and E3(x, y, z), which each

determine the electric force on a test charge along the y and z spatial directions.

We can summarize: The electric vector �eld E assigns a vector E(x, y, z)

to each point in space (x, y, z), which represents the electric �eld at

that location. If a test charge is placed there, it is accelerated in the

direction of this vector.





12. The Magnetic Vector Field

Another important fundamental physical quantity that appears in the second

and fourth Maxwell equation is the magnetic �eld. Experiments show that a

particle with electric charge q moving in a straight line with velocity v in an

external magnetic �eld, experiences a magnetic force Fm, which de�ects the

particle from its straight-line path.

The magnetic force on the particle increases proportionally to its charge Fm ∼ q

and proportional to its speed Fm ∼ v. This means that if the charge or speed is

doubled, the magnetic force on the particle also doubles.

The force also increases in proportion to the applied magnetic �eld. To describe

this proportionality of the force and the magnetic �eld, we introduce the quantity

B. Overall, the magnetic force (also called Lorentz force) is given by:
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Fm = q v B (12.1)

The unit of the quantity B must be such that the right-hand side of the equation

results in the unit of the force, that is N = kg ·m/s2. A simple transformation

results in the unit of B: kg/As2. We refer to this unit as Tesla for short:

T =
kg

As2
(12.2)

We refer to the proportionality constant B as magnetic �ux density or short:

magnetic �eld or even shorter B-�eld.

The equation 12.1 only represents the magnitude of the magnetic force Fm.

To formulate the magnetic force vectorially, the force, the velocity and the

magnetic �eld are written as vectors:

Fm =

Fm1

Fm2

Fm3

 , v =

v1v2
v3

 , B =

B1

B2

B3

 (12.3)

Now the three variables are not scalars, but three-dimensional vectors with the

components in x−, y− and z spatial direction. The question now is: How must

the velocity vector v be vectorially multiplied by the magnetic vector

�eld B?

If the de�ection of the charge in the magnetic �eld is investigated more closely

in an experiment, it can be determined that the magnetic force de�ects it always

orthogonally, in other words perpendicularly to the direction of velocity and

to the magnetic �eld lines. This orthogonality can be easily established with

the cross product v ×B.

The cross product between the velocity vector and the magnetic �eld vector is
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de�ned in such a way that the result of the cross product, which is a vector, is

always orthogonal on the two vectors v and B:

v ×B =

v1v2
v3

 ×

B1

B2

B3

 =

v2B3 − v3B2

v3B1 − v1B3

v1B2 − v2B1

 (12.4)

So that the magnetic force Fm is always orthogonal to v and B, their cross

product must be formed. The magnetic force is therefore given as a vector �eld

by the following equation:

Fm = q v ×B (12.5)

So what is the magnetic vector �eld B? The magnetic vector �eld assigns

a vector B(x, y, z) to each point in space (x, y, z), which determines the

magnitude and direction of the magnetic force Fm(x, y, z) on a moving

charge q.
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More: en.fufaev.org/maxwell-equations

The four Maxwell equations together with the Lorentz force contain the

entire knowledge of electrodynamics. There are so many applications of

this that I can't list them all, but some of them are, for example

� Electronic devices such as computers and mobile phones. They contain

electrical capacitors, coils and entire circuits that make use of Maxwell's

equations.

� Power generation - whether from nuclear, wind or hydroelectric power

plants, the energy released must �rst be converted into electrical energy

so that people can use it. This happens with electric generators. These in

turn are based on Maxwell's equations.

� Power supply. AC voltages and transformers are needed to transport

electricity to households with as little energy loss as possible.

� And much more! Electric welding for assembling car bodies, motors

for electric cars, magnetic resonance imaging in medicine, kettles in the

kitchen, the charger for your smartphone, radio, Wi-Fi and so on.

https://en.fufaev.org/maxwell-equations
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Isn't that incredible? Every device that utilizes electricity or magnetism is

fundamentally based on Maxwell's equations. Here, take a look:

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0 j + µ0ε0
∂E

∂t

They may still seem a little cryptic to you, but after this lesson you will be able

to translate each of these four equations into a picture, which will be easier to

internalize.

As you can see from Maxwell's equations, the electric �eld E and the magnetic

�eld B appear there. You will hopefully have become familiar with these two

quantities in the chapters 11 and 12. Of course, I also assume that you have

read the chapter 5 on the nabla operator, the Stokes' Curl Theorem 7 and the

Gauss Divergence Theorem 6. If this is the case, then you will have no problem

understanding the following chapters.

13.1 Integral and Differential Representation
The four Maxwell equations can be represented in two di�erent ways:

� We can represent Maxwell's equations in integral form. Here we express

them with integrals. This allows us to understand Maxwell's equations

macroscopically. This is what the integral form looks like. Let it a�ect
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you brie�y:∮
A

E · da =
Q

ε0∮
A

B · da = 0∮
L

E · dl = −
∫
A

∂B

∂t
· da∮

L

B · dl = µ0 I + µ0ε0

∫
A

∂E

∂t
· da

What feelings do these equations generate in you? Maybe fear? Trust me

- soon no more!

� We can represent Maxwell's equations in di�erential form. Here we

express them with derivatives. This allows us to understand Maxwell's

equations microscopically. This is what the di�erential form looks like:

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0 j + µ0ε0
∂E

∂t

What is the exact di�erence between these two representations? Both

representation are not physically di�erent, but mathematically they are.

And they are useful for di�erent problems in di�erent ways:

� While the di�erential form of a Maxwell equation applies to a single

point in space, the integral form applies to a entire spatial area.

� The integral form is well suited for calculating symmetric problems,

such as calculating the electric �eld of a charged sphere, a charged cylinder

or a charged plane. The di�erential form is more suitable for calculating

complicated numerical problems or for various derivations, such

as the derivation of electromagnetic waves.
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� In addition, the di�erential representation is much more compact than

the integral form.

Both representations are useful and can be converted into each other with

the help of two mathematical theorems (Gauss and Stokes), which you

learned about in the chapters 6 and 7. Once you have understood the two

theorems, it will be easy for you to convert the integral form into the di�erential

form and vice versa.

To understand Maxwell's equations, it is helpful to understand the electric and

magnetic �ux and the voltage.

13.2 Electric and Magnetic Flux
In the chapter 6 on the Gauss Divergence Theorem, you learned about the �ux

Φ of a vector �eld F through the surface A (we do not need the circle at

the integral sign to de�ne the �ux):

Φ =

∫
A

F · da (13.1)

The surface integral over the vector �eld F results in a number Φ, which

indicates how much of the vector �eld F passes through the surface A.

If the vector �eld F in the surface integral is an electric �eld F = E, then

this surface integral is called electric �ux Φe through the surface A:

Φe =

∫
A

E · da (13.2)
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If, on the other hand, the vector �eld F in the surface integral is a magnetic

�eld F = B, then this surface integral is referred to as magnetic �ux Φm

through the surface A:

Φm =

∫
A

B · da (13.3)

13.3 Electric and Magnetic Voltage
In the chapter 7 on the Stokes' Curl Theorem, we denoted the following line

integral over the vector �eld F by U :

U =

∫
L

F · dl (13.4)

The number U indicates how much of the vector �eld circulates along the line

L. It was no coincidence that we gave it the same letter as the voltage.

If the vector �eld F in the line integral is an electric �eld F = E, then this

line integral is referred to as electric voltage Ue along the line L:

Ue =

∫
L

E · dl (13.5)
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The voltage 13.5 in the case of an electric �eld is proportional to the kinetic

energy:

� A positively charged particle gains energy when it passes through

the line L.

� A negatively charged particle loses energy when it passes through

the line L.

The line integral 13.5 of the electric �eld, that is the voltage Ue, measures

the kinetic energy gain or energy loss of a charged particle when it passes

through the considered line L in the electric �eld. Note, however, that this

kinetic energy does not come from nothing, but is withdrawn from or added

to the electric �eld.

If the vector �eld F in the line integral is a magnetic �eld F = B, then this

line integral is referred to as magnetic voltage Um along the line L:

Um =

∫
L

B · dl (13.6)

In contrast to electric voltage, magnetic voltage has no interpretation as

energy, because here the particle does not change its energy when it passes

through the line L. Magnetic �elds do not perform any work on moving

charges. Nevertheless, the analogous de�nition to electric voltage makes

mathematical sense.

We will need this knowledge of electric and magnetic �ux and voltage in a

moment if we want to understand Maxwell's equations in integral form.
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13.4 First Maxwell Equation

13.4.1 Macroscopic form
Let's take a look at the �rst Maxwell equation in integral form:∮

E · da =
Q

ε0
(13.7)

You should be familiar with the left-hand side of Maxwell's equation 13.7. It is

the electric �ux Φe through an imaginary surface A that encloses something.

The left-hand side of Maxwell's equation therefore tells you how much net of

the electric �eld E exits and enters the surface A:

Φe =
Q

ε0
(13.8)

On the right-hand side of the �rst Maxwell equation is the total electric charge

Q, which is enclosed by the surface A. The vacuum permitivity ε0 is

only there to have the correct unit "voltmeter" on both sides of the Maxwell

equation. The interesting thing is: It doesn't matter how this enclosed charge

is distributed.

So what does Maxwell's �rst equation mean in integral form? The

electric �ux through a surface is determined by the electric charge enclosed by
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that surface.

13.4.2 Microscopic form
This is the macroscopic interpretation of Maxwell's �rst equation. For a

microscopic interpretation, we need to convert the intergral form into a

di�erential form. How do we do that? We must �rst convert both sides of

Maxwell's equation 13.7 into a volume integral.

With the Gauss Divergence theorem 6.1, which links a volume integral with a

surface integral, the surface integral on the left-hand side of the �rst Maxwell

equation can be rewritten as a volume integral:∫
V

(∇ ·E) dv =
Q

ε0
(13.9)

The enclosed charge Q can also be expressed with a volume integral. The charge

corresponds to the charge density ρ over the considered volume V , because

charge density is by de�nition charge per volume. This means that the volume

integral of the charge density ρ over a volume V corresponds to the charge

enclosed in this volume. This transforms the right-hand side of the �rst Maxwell

equation 13.9 into a volume integral:∫
V

(∇ ·E) dv =
1

ε0

∫
V

ρ dv (13.10)

On both sides in Eq. 13.10 we integrate over the same volume V . To ensure

that this equation is always ful�lled for any chosen volume, the integrands on

both sides must be the same (whereby the right integrand is multiplied by the

constant 1
ε0
). This results in the di�erential form of the �rst Maxwell

equation:

∇ ·E =
ρ

ε0
(13.11)

On the left-hand side of the di�erential form is the divergence ∇ · E of the

electric �eld. The divergence at the location (x, y, z) can be positive, negative
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or zero. We learned what this means in the 5.2 chapter:

� If the divergence ∇ ·E(x, y, z) > 0 at the location (x, y, z) is positive,

then the charge density ρ(x, y, z) at the location (x, y, z) is also positive.

There is therefore a positive electric charge at the location (x, y, z),

which is the source of the electric �eld.

� If the divergence ∇ ·E(x, y, z) < 0 at the location (x, y, z) is negative,

then the charge density ρ(x, y, z) at the location (x, y, z) is also

negative. There is therefore a negative electric charge at the

location (x, y, z), which is the sink of the electric �eld.

� If the divergence ∇ ·E(x, y, z) = 0 at the location (x, y, z) is zero, then

the charge density ρ(x, y, z) at the location (x, y, z) is also zero. There

is therefore neither a negative nor a positive electric charge at the

location (x, y, z) or there is just as much positive as negative charge there,

so that the total charge at this point (x, y, z) cancels out. In this case,

there is a ideal electric dipole at this point.

So what does Maxwell's �rst equation mean in di�erential form? The electric

charges are the sources and sinks of the electric �eld. Charges

generate an electric �eld.

13.5 Second Maxwell Equation

13.5.1 Macroscopic form
The second Maxwell equation in integral form looks like this:∮

A

B · da = 0 (13.12)

Nothing here should be unfamiliar to you. On the left-hand side is a surface

integral. However, it is not integrated over an electric vector �eld, as in the �rst

Maxwell equation, but over a magnetic vector �eld B. This surface integral

corresponds to the magnetic �ux Φm through the closed surface A.

So what does Maxwell's second equation mean in integral form from a
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macroscopic point of view? The magnetic �ux through a closed surface

is always zero. There are as many magnetic �eld vectors pointing

into the surface as out.

13.5.2 Microscopic form
To obtain the di�erential form of the second Maxwell equation, we must

convert the surface integral in the second Maxwell equation 13.12 into a volume

integral. To do this, we simply replace the surface integral with the volume

integral using the Gauss Divergence Theorem 6.1. The second Maxwell equation

then looks like this:∫
V

(∇ ·B) dv = 0 (13.13)

The integral 13.13 for any volume V is always zero only if the integrand ∇·B
is zero. This is how the second Maxwell equation in its di�erential form

emerges:

∇ ·B = 0 (13.14)

The magnetic counterpart to the electric charge is the magnetic charge: a

magnetic south pole and north pole. We call themmagnetic monopoles. They

have never been observed experimentally, which is why it is initially assumed
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that no magnetic monopoles exist. Their non-existence is captured in the second

Maxwell equation (the right-hand side is zero).

The di�erential representation of Maxwell's second equation allows us a

microscopic interpretation of the non-existence of magnetic monopoles.

The vanishing divergence ∇ ·B(x, y, z) of the magnetic �eld means: No matter

which point in space (x, y, z) we look at - there is no magnetic monopole

in any point in space. Or, when the divergence also disappears, is the case

when there is an ideal magnetic dipole at the point (x, y, z). A magnetic

dipole is a combination of the south and north poles. These are inseparably

connected to each other.

Since there are no magnetic monopoles, there are no sources and sinks of

the magnetic �eld. Consequently, there are no points in space where magnetic

�eld vectors originate or diverge to a point. The magnetic �eld lines

must therefore always be closed.

The second Maxwell equation is just like the other Maxwell equations an

experimental observation. This means that if at some point a magnetic

monopole is found, for example a single north pole without an associated south

pole, then Maxwell's second equation must be modi�ed. That would be nice

for us, because then Maxwell's equations would be even more symmetrical!

13.6 Third Maxwell Equation

13.6.1 Macroscopic form
The third Maxwell equation in integral form looks like this:∮

L

E · dl = −
∫
A

∂B

∂t
· da (13.15)

On the left-hand side is a line integral of the electric �eld E over a closed

line L that borders the surface A. This line integral sums up all components

E|| of the electric �eld that run along the line L. From the chapter 13.3 we know

that this line integral corresponds to the electric voltage Ue along the loop L.
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We can also write the second Maxwell equation as follows:

Ue = −
∫
A

∂B

∂t
· da (13.16)

This form of Maxwell's third equation is referred to as law of induction. On

the right-hand side of the law of induction is a surface integral of the time

derivative of the magnetic �eld. If the surface A through which the magnetic

�eld penetrates does not change over time, we can put the time derivative ∂
∂t

in front of the integral:

Ue = − ∂

∂t

∫
A

B · da (13.17)

Now we can interpret the surface integral on the right-hand side as magnetic

�ux Φm through the surface A:

Ue = −∂Φm

∂t
(13.18)

The time derivative in front of the magnetic �ux is also still there. The magnetic

�ux is therefore di�erentiated with respect to time in the third Maxwell equation.

The time derivative of the magnetic �ux indicates how quickly the magnetic

�ux changes when time passes. The third Maxwell equation therefore tells us

two equivalent things:

� The faster the magnetic �ux Φm changes through the enclosed surface A,

the greater the voltage Ue generated along the edge of the surface L.

� The faster the magnetic �ux through the enclosed surface A changes, the

stronger the parallel �eld component E||, which runs along the edge

of the surface L. This electric �eld along the edge is also referred to as

electric vortex �eld, because this �eld component swirls around the

edge of the surface:∮
L

E · dl = −∂Φm

∂t
(13.19)
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Of course, we can also interpret Maxwell's third equation 13.19, expressed with

the vortex �eld, the other way round: The stronger the electric vortex

�eld E (or more precisely E||) around the surface boundary L the faster the

magnetic �ux Φm (or equivalently B||) changes through the surface A.

You are probably also wondering what the minus sign before the time

derivative means? The minus sign takes into account the circulation

direction of the vortex �eld:

� If the change in magnetic �ux is positive, that is ∂Φm

∂t
> 0, then the

voltage is negative due to the minus sign, that is Ue < 0.

� If the change in magnetic �ux is negative, that is ∂Φm

∂t
< 0, then the

voltage is positive due to the minus sign, that is Ue > 0.

The vortex component E|| of the electric �eld E thus swirls around in such a

way that the change in magnetic �ux is impeded. Nature tries to prevent

the change in �ux with a vortex �eld. You probably remember this minus sign

in the third Maxwell equation from school as the Lenz rule. The minus sign

takes into account the law of conservation of energy.

What would happen if we omitted the minus sign? The electric vortex �eld

(with the �eld energy We) would generate a magnetic �ux change ∂Φm

∂t
. This

in turn would amplify the electric vortex �eld. This would increase the �eld

energy We. The increased vortex �eld leads to an increased change in �ux. This

in turn leads to an even larger vortex �eld and thus to greater �eld energy.

This mutual ampli�cation does not stop and the �eld energy We becomes

in�nitely large. We could tap into this with a capacitor, for example, and have
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an inexhaustible source of energy. This not only violates the law of

conservation of energy, but also the third law of thermodynamics, which states

that it is impossible to build such a perpetual motion machine.

If the magnetic �ux does not change over time ∂Φm

∂t
= 0, then of course there is

also no electric vortex �eld and no electric voltage. The right-hand side of

the third Maxwell equation 13.19 is therefore zero:∮
L

E · dl = 0 (13.20)

Now it is stated in 13.20 that the line integral over the electric �eld, that is the

electric voltage Ue, is always zero along a closed line L. There is therefore

no electric vortex �eld as long as there is no time-varying magnetic

�eld! This means: If an electron were to pass through the closed line L in the

electric �eld E, the electron would not change its energy.

13.6.2 Microscopic form
Let us now convert the third Maxwell equation 13.15 in integral representation

into a di�erential representation in order to be able to interpret the Maxwell

equation microscopically. To do this, we use the Stokes' Curl Theorem from

the chapter 7, which links a line integral with a surface integral. So let's

replace the line integral with a surface integral in 13.15:∫
A

(∇×E) · da = −
∫
A

∂B

∂t
· da (13.21)

This brings the curl ∇×E into play. Since the equation 13.21 applies to any

surfaces A, the integrands on both sides must be equal. This yields the third

Maxwell equation in di�erential representation:

∇×E = −∂B
∂t

(13.22)

The di�erential representation 13.22 states: If the magnetic �eld B(t, x, y, z)

changes in time at the point in space (x, y, z), then an electric vortex
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�eld E(t, x, y, z) is generated around this point in space, which attempts to

suppress this change in the magnetic �eld. Of course, the interpretation also

works the other way round: an electric vortex �eld around a point in space

generates a magnetic �eld that changes over time.

If themagnetic �eld does not change, that is, if it is static, the right-hand side

in 13.22 is zero and the third Maxwell equation is simpli�ed to an electrostatic

Maxwell equation. �Electrostatic� here means that the electric �eld E is

time-independent:

∇×E = 0 (13.23)

As long as there is no changing magnetic �eld, the electric �eld is always

E vortex-free. We know this from mathematics: If the rotation ∇ · E of

a vector �eld F vanishes, then the vector �eld is conservative, that is, it

conserves energy. The electrostatic electric �eld E in Eq. 13.23 is therefore

conservative. Electric charges are neither accelerated nor decelerated in this

electric �eld - they do not change their energy.

13.7 Fourth Maxwell Equation

13.7.1 Macroscopic form
The fourth Maxwell equation in integral form looks like this:∮

L

B · dl = µ0 I + µ0 ε0

∫
A

∂E

∂t
· da (13.24)

On the left-hand side of Maxwell's fourth equation is a line integral of the

magnetic �eld B along the closed line (loop) L. We already know what this

line integral means from the line integral over the electric �eld in Eq. 13.19.

It indicates the vortex component B|| of the magnetic �eld B, which swirls

around the loop L.

The right-hand side of Maxwell's fourth equation 13.24 tells us how we can

generate this magnetic vortex �eld:
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� We can generate it with a electric current I through the surface A. This

current does not have to change in time to generate a magnetic vortex

�eld.

� We can generate it with a time-changing electric �eld E(t) through

the surface A.

� We can generate it with both contributions, I and E(t).

The physical constants ε0 and µ0 in the fourth Maxwell equation are irrelevant

for understanding the fourth Maxwell equation. These constants merely ensure

that the right-hand side also has the unit "Tesla times meter", like the left-hand

side of the equation.

On the right-hand side of 13.24 we can pull the time derivative in front of the

integral if the surface A does not change:∮
L

B · dl = µ0I + µ0ε0
∂

∂t

∫
A

E · da (13.25)
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Then the surface integral, integrated over the electric �eld, corresponds exactly

to the electric �ux Φe through the surface A:∮
L

B · dl = µ0I + µ0ε0
∂Φe

∂t
(13.26)

13.7.2 Ampere’s Law
An important special case arises if the electric �ux does not change over time,

that is, ∂Φe

∂t
= 0, then Maxwell's fourth equation is simpli�ed to Ampere's

Law:∮
L

B · dl = µ0I (13.27)

According to the Ampere's Law, a current-carrying wire generates a magnetic

vortex �eld around itself.

13.7.3 Microscopic form
Let us now derive the di�erential form of the fourth Maxwell equation. Using

the Stokes' Curl Theorem 7.1, we convert the line integral inside the integral

form 13.24 into a surface integral. In this way, the curlof the magnetic �eld

∇×B comes into play:∫
A

(∇×B) · da = µ0I + µ0ε0

∫
A

∂E

∂t
· da (13.28)

Now the term with the electric current I must be converted into a surface

integral. To do this, we simply have to express the current with the electric
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current density j. The current density is de�ned as the current per

cross-sectional area. Consequently, the surface integral over the current density

corresponds to the current through the cross-sectional area A. The fourth

Maxwell equation thus becomes:∫
A

(∇×B) · da = µ0

∫
A

j · da + µ0ε0

∫
A

∂E

∂t
· da (13.29)

Note that the scalar product of the current density with the surface element da

is taken in the integral. The scalar product therefore only picks the component

j|| of the current density vector that runs parallel to the surface element

da. Only this current density component contributes to the current through the

cross-sectional area A.

Now we have a surface integral in each term of the fourth Maxwell equation.

We can combine the two surface integrals on the right-hand side into one surface

integral because both summands are integrated over the same area:∫
A

(∇×B) · da =

∫
A

(
µ0j + µ0ε0

∂E

∂t

)
· da (13.30)

For the Maxwell equation 13.30 to be ful�lled for any-surface A, the integrands

on both sides must be equal. This results in the fourth Maxwell equation in

di�erential representation:

∇×B = µ0j + µ0ε0
∂E

∂t
(13.31)

What does Maxwell's fourth equation microscopically mean? If the electric

�eld E(t, x, y, z) changes over time at the point in space (x, y, z) or if

the current density j(t, x, y, z) is not zero, then a magnetic vortex �eld

B(t, x, y, z) is generated around this point in space.

You should now have an intuitive understanding of Maxwell's four equations.

Next, let's take a look at where exactly the electromagnetic waves are hidden in

Maxwell's equations.
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More: en.fufaev.org/electromagnetic-waves

An electromagnetic wave (short: EM wave) consists of a electric �eld

component E(t, x, y, z) and a magnetic �eld component B(t, x, y, z). The

two �eld components assign an electric and magnetic �eld strength and its

direction to each point (x, y, z) in three-dimensional space at each time t. The

two �eld components are therefore three-dimensional vector �elds:

E(t, x, y, z) =

E1(t, x, y, z)

E2(t, x, y, z)

E3(t, x, y, z)

 B(t, x, y, z) =

B1(t, x, y, z)

B2(t, x, y, z)

B3(t, x, y, z)


� The magnitude (�eld strength) E(t, x, y, z) (not shown in bold) indicates

the electric amplitude of an electromagnetic wave.

� The magnitude (�eld strength) B(t, x, y, z) indicates the magnetic

amplitude of an electromagnetic wave.

The amplitudes are generally not only dependent on location, but they also

change with time t. This is the only way to obtain an electromagnetic

oscillation in space and time. The following image shows the oscillation of

https://en.fufaev.org/electromagnetic-waves
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the E and B vectors in space. The wave vector k indicates the

propagation direction of the electromagnetic wave:

How an electromagnetic wave changes exactly in space and time, that is, how

it moves and propagates in space, is described by the wave equations for E

and B vectors. Let's take a look at how we can extract these wave equations

from Maxwell's equations:

∇ ·E =
ρ

ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0 j + µ0ε0
∂E

∂t

We assume that the electromagnetic wave propagates in an empty space,

without charges (ρ = 0) and currents (j = 0). We therefore set both the

charge density ρ and the current density j in Maxwell's equations to zero.

This simpli�es them to charge- and current-free Maxwell's equations:

∇ ·E = 0 (14.1)

∇ ·B = 0 (14.2)

∇×E = −∂B
∂t

(14.3)

∇×B = µ0ε0
∂E

∂t
(14.4)
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The general form of a wave equation for a vector �eld F looks like this:

∇2F =
1

vp

∂2F

∂t2
(14.5)

Here F is an arbitrary vector �eld that satis�es the wave equation and vp is

the phase velocity of the wave. It indicates how fast a point of the wave moves

in space. Since we are not considering dispersion (meaning that the wave moves

apart), the phase velocity describes the propagation speed of the wave.

A relation that is necessary for the derivation of the wave equation is the

following relationship for the curl of the curl of the vector �eld F (double

cross product):

∇×∇× F = ∇(∇ · F ) − ∇2F (14.6)

The four Maxwell equations are coupled di�erential equations. "Coupled"

here means that the third and fourth Maxwell equations contain both the E

�eld and the B �eld. To obtain the wave equations for the E and B �eld

component of an electromagnetic wave, we need to decouple the two coupled

Maxwell equations. Let's do that. It's quite simple.
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14.1 Wave equation for the E-field
To arrive at the wave equation for the electric �eld E, we have to decouple the

third Maxwell equation:

∇×E = −∂B
∂t

(14.7)

Let's apply the curl operator with cross product ∇× to both sides of the

third Maxwell equation:

∇×∇×E = ∇×
(
−∂B
∂t

)
(14.8)

The time derivative together with the minus sign may be placed in front of the

Nabla operator, since the Nabla operator only contains spatial derivatives

and thus does not depend on time:

∇×∇×E = − ∂

∂t
(∇×B) (14.9)

Now we can replace the curl ∇ × B of the magnetic �eld using the fourth

current-free Maxwell equation 14.4:

∇×∇×E = − ∂

∂t

(
µ0 ε0

∂E

∂t

)
(14.10)

= −µ0 ε0
∂

∂t

(
∂E

∂t

)
(14.11)

= −µ0 ε0
∂E2

∂t2
(14.12)

We are �nished with the right-hand side. It has the same form as the general

wave equation 14.5. Now we have to replace the double cross product on the

left-hand side with the relation 14.6:

∇ (∇ ·E) − ∇2E = −µ0 ε0
∂E2

∂t2
(14.13)

On the left-hand side is the divergence ∇ ·E of the electric �eld. According to
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Maxwell's �rst equation 14.2, the divergence of the electric �eld in charge-free

space is always zero. This simpli�es 14.13 to wave equation for the electric

�eld component of an electromagnetic wave:

∇2E = µ0ε0
∂E2

∂t2
(14.14)

The wave equation thus links spatial derivatives ∇2E of the electric �eld

with the time derivatives ∂E2

∂t2
and thus represents a system of three partial

di�erential equations.

If we compare the wave equation 14.14 for the electric �eld with the general

form 14.5 of a wave equation, we �nd out how the propagation velocity vp is

related to the two �eld constants µ0 and ε0:

1

vp2
= µ0 ε0 ↔ vp =

1
√
µ0 ε0

(14.15)

If we speci�cally calculate the propagation velocity of an electromagnetic wave,

we get the velocity of light c:

vp =
1

√
µ0 ε0

= 3× 108
m

s
= c (14.16)

From Maxwell's equations and the derived wave equation for the E �eld, we can

conclude that the electric �eld component of the electromagnetic wave

propagates at the speed of light. We will see that it also applies to the B

�eld component. We can therefore express the E wave equation with the

speed of light:

∇2E =
1

c2
∂E2

∂t2
(14.17)

14.2 Wave equation for the B field
To derive the wave equation for the magnetic �eld B, we have to decouple

the fourth Maxwell equation 14.4. Decoupling is done in the same way as we
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did with the E �eld.

Apply the curl operator with cross product ∇× on both sides of the fourth

current-free Maxwell equation:

∇×∇×B = ∇×
(
µ0 ε0

∂E

∂t

)
(14.18)

Now let's move the time derivative and the two constants on the right-hand side

in front of the Nabla operator:

∇×∇×B = µ0 ε0
∂

∂t
(∇×E) (14.19)

Now we can replace the curl ∇×E of the electric �eld with the third Maxwell

equation:

∇×∇×B = µ0ε0
∂

∂t

(
−∂B
∂t

)
(14.20)

We have now decoupled the third Maxwell equation. The time derivative on the

right-hand side is combined and the double cross product on the left-hand side

is replaced using the calculation rule 14.6:

∇ (∇ ·B) − ∇2B = −µ0 ε0
∂B2

∂t2
(14.21)

The divergence ∇ · B = 0 disappears according to the second Maxwell

equation (there are no magnetic monopoles). The term ∇ (∇ · B) therefore

disappears and what remains is the wave equation for the magnetic �eld

of an electromagnetic wave:

∇2B = µ0 ε0
∂B2

∂t2
(14.22)

In order to �nd concrete electromagnetic waves ( spherical waves emanating

from a radio tower, for example), we have to solve these wave equations for
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certain initial or boundary conditions. Mathematicians or Python can do this

for us. It is important that you now know how to get wave equations from

Maxwell's equations and that their solution describes electromagnetic

waves that propagate at the speed of light.

14.3 A few hints
The derived wave equations 14.14 and 14.22 are partial di�erential equations

of the second order. For example, if we look at the wave equation 14.14 for the

E-�eld, then, strictly speaking, these are three partial di�erential equations:

∇2E =
1

c2
∂E2

∂t2

Why? Because the E �eld is a vector with three components E1, E2 and

E3. Let's write out this wave equation to understand what I mean:
∂2E1

∂x2 + ∂2E1

∂y2
+ ∂2E1

∂z2

∂2E2

∂x2 + ∂2E2

∂y2
+ ∂2E2

∂z2

∂2E3

∂x2 + ∂2E3

∂y2
+ ∂2E3

∂z2

 =
1

c2


∂2E1

∂t2

∂2E2

∂t2

∂2E3

∂t2

 (14.23)

There are three di�erential equations for the E �eld that you have to solve.

Fortunately, they are not coupled and can therefore be solved independently

of each other. Physically, non-coupled di�erential equations mean:: The three

�eld components E1, E2 and E3 oscillate independently of each other.

They do not interfere with each other!

The solution E(t, x, y, z) of the wave equation 14.17 is an electric wave, but it

does not necessarily represent the E-�eld of an electromagnetic wave,

only because E(t, x, y, z) solves the wave equation. The solution E(t, x, y, z)

only describes theE �eld of an electromagnetic wave in a vacuum if the solution

also satis�es all four Maxwell equations.

From the fourth, current-free Maxwell equation 14.4, for example, we can

directly read o� the orientation of the E and B �eld components. Here is the
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Maxwell equation again:

∇×B = µ0 ε0
∂E

∂t

We know from mathematics that the result vector ∇×B of the cross product

is always orthogonal to the vectors between which the cross product is formed.

In this case, the B �eld vector is therefore orthogonal to the derivative of the

E �eld vector. However, the time derivative does not change the direction

of a vector. The E �eld vector and its derivative therefore point in the same

direction. Thus the solutionsE(t, x, y, z) andB(t, x, y, z) of the wave equation

are perpendicular to each other at any time and at any place.

Now you should have an intuitive understanding of electromagnetic waves and

the associated wave equations!
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15. Schrödinger equation

More: en.fufaev.org/schrodinger-equation

Most phenomena in our everyday world can be described using classical

mechanics. The goal of classical mechanics is to �nd out how a body moves

over time. Classical mechanics therefore determines the trajectory r(t),

that is, the path of this body. With the trajectory, we can predict where this

body was, is and will be at any time t. We thus describe the movement of the

body.

Here are some examples of the motion of bodies whose trajectory r(t) can be

predicted using classical mechanics:

� Movement of our earth around the sun

� Movement of a satellite around the Earth

� Motion of a rocket

� Motion of a swinging pendulum

� Motion of a thrown stone

These are all classical problems that can be solved with the help of

https://en.fufaev.org/schrodinger-equation
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Newton's second law of motion, that is, with the following di�erential

equation:

ma = F ↔ m
d2r

dt2
= −∇Wpot (15.1)

Here, Wpot is the potential energy of a body of mass m. For example, this could

be the potential energy in the Earth's gravitational �eld.

By solving the Newton di�erential equation 15.1 we can �nd the

unknown trajectory r(t) of a body. The solution is a position vector

r(t) = [x(t), y(t), z(t)], which speci�es the three-dimensional position of the

body at any time t.

Once we have determined the trajectory r(t) by solving the di�erential equation,

we can extract all other physical quantities. Here are a few examples of these

quantities:

� Velocity of the body: v(t) = dr
dt

� Momentum of the body: p(t) = mv(t)

� Kinetic energy of the body: Wkin(t) =
1
2
mv2

In order to be able to specify the solution r(t), the initial conditions that

characterize the problem to be solved must also be known. In classical physics,

these are the initial position r(t0) and the initial velocity v(t0) of the body.

In quantum mechanics, on the other hand, it would not even be possible to
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specify a initial position and initial velocity due to the Heisenberg

uncertainty principle. However, the procedure with Newton's second law and

the determination of the trajectory r(t) is not possible for a quantum mechanical

particle. This is because a quantum particle (such as an electron) behaves

like a wave under many conditions. The position r(t) of an electron cannot

be determined precisely due to this wave character, because a wave is not

concentrated at a single point. And, if we try to squeeze the wave to a �xed

point, then, according to the Heisenberg uncertainty principle, the momentum

p(t) of an electron can no longer be determined precisely.

So we cannot determine the trajectory of a quantum particle as in classical

mechanics and then deduce all other physical quantities from this, but must

�nd another way to describe a quantum particle. And this other way is the

development of quantum mechanics and the Schrödinger equation.

It was only through the novel approach to nature with the help of the

Schrödinger equation that humans succeeded in making part of the microcosm

controllable. This has enabled humans to build lasers, which are now

indispensable in medicine and research. Or scanning tunneling

microscopes, which signi�cantly exceed the resolution of conventional light

microscopes. It was only through the Schrödinger equation that the periodic

table of elements and nuclear fusion in our sun were precisely

understood. But this is only a fraction of the applications that the Schrödinger

equation and quantum mechanics have brought us. So let's get to know this

powerful equation a little better.

Take a look at the following time-dependent Schrödinger equation in one

spatial dimension and let it sink in:

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ WpotΨ (15.2)

We can already state mathematically that the Schrödinger equation is a partial

di�erential equation of second order:

� The Schördinger equation is a di�erential equation. The unknown
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quantity is a function and derivatives of this function occur in the

equation. The unknown function in the Schrödinger equation is the

wave function Ψ(x, t). It depends on the spatial coordinate x and

the time t and describes a quantum mechanical particle with mass m

and potential energy Wpot. Note that in the Schrödinger equation x

speci�es a spatial coordinate and not, as in classical mechanics the

(one-dimensional) trajectory x(t) of the position vector

r(t) = [x(t), y(t), z(t)].

� The Schördinger equation is a partial di�erential equation. It therefore

contains derivatives of Ψ with respect to di�erent variables, namely the

derivative with respect to the spatial variable x and the derivative

with respect to the time t.

� The Schördinger equation is a partial di�erential equation of second

order. By "second order" it is meant that the maximum derivative

that occurs in the di�erential equation is the second order derivative.

The wave function is di�erentiated twice with respect to the spatial

coordinate in the Schrödinger equation.

As is the case with any di�erential equation, our goal is to solve the Schrödinger

equation to �nd the desired wave functionΨ and then apply the initial conditions

for a speci�c quantum mechanical problem (e.g. an electron in a potential well).

However, there is no general recipe for how to solve the Schrödinger

di�erential equation for a given problem. Most quantum problems cannot even

be solved analytically (exactly), but require approximate methods or

numerical solutions using a computer.

15.1 Time-Independent Schrödinger Equation
Unfortunately, it is not possible to derive the Schrödinger equation from

classical mechanics alone. We still need the wave-particle duality, which

does not occur within classical mechanics. In the following, let us motivate the

Schrödinger equation and thus understand the fundamental principles behind

it.
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We make our lives easier by looking at a one-dimensional movement. In one

dimension, a quantum particle can only move along a straight line, namely along

the local axis x.

15.1.1 Energy conservation
Let us now take a particle of mass m, which �ies with a velocity v in x-space

direction. The particle therefore has a kinetic energy Wkin. It can also be in

a conservative (i.e. energy-conserving) �eld, for example in a gravitational �eld

or in the electric �eld of a plate capacitor. The particle can therefore also have

a potential energy Wpot. The total energy W of the particle is made up of

the kinetic and potential energy and is constant in time ( meaning that the total

energy remains constant):

W = Wkin + Wpot (15.3)

You should be familiar with the total energy and its conservation over time.

You already know this from the basics of classical mechanics. The law of

conservation of energy is a fundamental principle of physics, which is also

ful�lled in quantum mechanics in a modi�ed form in conservative �elds.

15.1.2 Wave-Particle Duality
The peculiarity of quantum mechanics is added by the wave-particle duality.

This allows us to view the particle as a matter wave.

The wave-particle duality links the "particle-like" momentum p with the
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"wave-like" quantity, namely with the de-Broglie wavelength λ:

λ =
h

p
↔ p =

h

λ
(15.4)

The two quantities are linked by the Planck's constant h = 6.6 · 10−34 Js with

each other. Because of the tiny value of h, it is understandable why we do

not observe wave-particle duality in our macroscopic everyday life.

In theoretical physics, it is common to express the momentum 15.4 not with the

de-Broglie wavelength λ, but with the wavenumber k. The momentum looks

like this:

p =
h k

2π
= ℏ k (15.5)

Here ℏ = h
2π

is de�ned as reduced Planck's constant and is only used for

shorter notation. Whether we de�ne the particle momentum as in Eq. 15.4 or

15.5 is purely a matter of taste. We simply stick to the usual representation

15.5 in theoretical physics.

The momentum 15.5 is also a measure of whether the particle behaves more

particle-like or wave-like:

� The smaller the wavenumber k (that is, the greater the de Broglie

wavelength λ), the more likely the particle behaves quantummechanically -

more like a matter wave. In this case, we speak of a quantummechanical

particle.

� The larger the wavenumber k (that is, the smaller the de Broglie

wavelength λ), the more likely the particle behaves classically - like a real

particle. In this case, we speak of a classical particle.

The particle has a small wave number ( in other words a large de Broglie

wavelength) if it has a very small momentum p. So a small mass m and small

velocity v. A perfect candidate for such a quantum mechanical particle is a

free electron. By "free" we mean that it is not in an external �eld. The
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electron behaves like an extended matter wave, which we can describe

mathematically with a plane wave. We denote the plane matter wave here

with the capital Greek letter Ψ(x, t). A plane matter wave generally depends

on the spatial coordinate x and the time t.

15.1.3 Plane wave
We can describe a plane wave that has the wavenumber k, (angular)

frequency ω and amplitude A by a cosine function (or sine function):

Ψ(x, t) = A cos (k x− ω t) (15.6)

As time t progresses, the matter wave moves in the positive x direction, just like

the electron we are looking at.

In order to perform calculations with such plane waves without any addition

theorems, we convert the plane wave into a complex exponential function.

This is an equivalent but extremely e�ective representation of the plane wave.

Als erstes: Addiere zur Cosinusfunktion die komplexe Sinusfunktion

iA sin (k x− ω t):

Ψ(x, t) = A cos (k x− ω t) + iA sin (k x− ω t) (15.7)

= A [cos (k x− ω t) + i sin (k x− ω t)] (15.8)

We have thus converted a real function 15.6 into a complex function 15.8. Here,

the imaginary unit i ensures that the plane matter wave becomes complex-

valued and we can immediately represent it as a compact exponential function.

The cosine term is the real part Re(Ψ) and the sine term is the imaginary

part Im(Ψ) of the complex-valued function Ψ . The good thing is that we can
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exploit the enormous advantages of the complex notation 15.8 and then agree

that we are only interested in the real part (the cosine term) in the experiment.

We can then simply ignore the imaginary part.

However, remember that a complex plane wave 15.8 is also a possible solution

of the Schrödinger equation. Most solutions Ψ(x, t) of the Schrödinger equation

are complex-valued wave functions. Real-valued wave functions, as in Eq.

15.6, are then only a special case.

Next, we use the Euler relation eiφ = cos(φ) + i sin(φ) from mathematics,

which links the complex exponential function with cosine and sine. In our

case, φ = k x+ ω t. Let's use this to rewrite our complex plane wave:

Ψ(x, t) = A ei(k x−ω t) (15.9)

Whenever you encounter such a complex exponential function 15.9, you know

immediately that it always describes a plane wave - in this case a matter wave.

Our original, real-valued plane wave 15.6 as a cosine function is contained in

the complex exponential function 15.9, namely as the real part Re(Ψ) of

the wave function.

15.1.3.1 Plane wave in a complex plane

Such a complex-valued wave function 15.9, at a �xed coordinate x, can be

represented in the complex number plane as an arrow Ψ (a complex

vector).
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� The amplitude A corresponds to the length of the arrow.

� The argument k x + ω t corresponds to the phase angle φ, which is

enclosed between the real axis and the Ψ pointer. As the angle changes

with time t, the arrow rotates clockwise. This rotation represents the

temporal propagation of the plane wave along the x-local axis.

The complex exponential function 15.9 is a function that describes a plane

wave. This is why it is also called a wave function Ψ(x, t), especially in

the context of quantum mechanics. Sometimes we also say: The particle is

in the state Ψ . By this we mean its equivalent representation as an in�nite-

dimensional vector (see chapter 16 on the Bra-Ket Notation).

There are, of course, a wide variety of wave functions that describe a wide variety

of particles under a wide variety of conditions. The plane wave is only a simple

example of a possible wave function.

Next, we multiply the total energy 15.3 by the wave function 15.9. In this way,

we combine the law of conservation of energy and the wave-particle

duality in one equation:

W Ψ = WkinΨ + WpotΨ (15.10)

15.1.4 Wave equation
But this equation doesn't help us much yet. We still have to convert it into

a di�erential equation. We regularly encounter a plane wave 15.9 in optics

and electrodynamics when describing electromagnetic waves (see chapter 14).

And from there we know that it is a possible solution to the following (one-

dimensional) wave equation:

∂2Ψ

∂x2
=

1

c2
∂2Ψ

∂t2
(15.11)

In our case, c = ω/k is the phase velocity of the matter wave. On the

left-hand side of the wave equation is the second derivative of the wave function

with respect to the space x. It is therefore reasonable to di�erentiate the plane
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wave function 15.9 twice with respect to x:

∂2Ψ

∂x2
=

∂2

∂x2
(
A ei(k x−ω t)

)
= −k2A ei(k x−ω t) (15.12)

By taking the derivative twice, we get i2k2 as a factor and, because of i2 = −1,

a minus sign. The wave function as an exponential function remains unchanged

when di�erentiated - as you hopefully know. The second derivative therefore

results in:

∂2Ψ

∂x2
= −k2Ψ (15.13)

Next, we carry out four seemingly arbitrary steps that will ultimately lead us to

the Schrödinger equation. In these steps, we want to link the second derivative

15.13 of the wave function with the constant total energy W of the quantum

particle:

� Let's use the de Broglie relation p = ℏ k and replace k2 in the second

derivative 15.13:

∂2Ψ

∂x2
= −p

2

ℏ2
Ψ (15.14)

� Next, we bring the kinetic energy expressed by the momentum Wkin =
p2

2m

into play by substituting p2 into Eq. 15.14 with p2 = 2mWkin:

∂2Ψ

∂x2
= −2m

ℏ2
WkinΨ (15.15)

� If we now look at the total energy 15.10 multiplied by the wave function,

we see that WkinΨ occurs there. We therefore rearrange 15.15 for WkinΨ :

WkinΨ = − ℏ2

2m

∂2Ψ

∂x2
(15.16)

� If we only insert Eq. 15.16 into the total energy 15.10 multiplied by the
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wave function, we get the time-independent Schrödinger equation

in one space dimension:

W Ψ = − ℏ2

2m

∂2Ψ

∂x2
+ WpotΨ (15.17)

We recognize the one-dimensionality of the Schrödinger equation 15.17 by

the fact that only the di�erentiation with respect to a single spatial

coordinate x occurs here. And we can recognize the time-independence of

the Schrödinger equation by the fact that it contains a constant total energy

W . However, the wave function Ψ(x, t) in the time-independent Schrödinger

equation may of course be time-dependent!

Let's summarize: To derive the time-independent Schrödinger equation

refeq:timeindependent-schrodinger-equation, we needed two fundamental

principles, the law of conservation of energy 15.3 and the

wave-particle-dualism 15.4, which we introduced with the help of a plane

matter wave 15.9. And since we started from the law of conservation of energy,

the time-independent Schrödinger equation is also referred to as law of

conservation of energy in quantum mechanics.

15.2 Interpretation of the wave function
Let's assume that we have solved the Schrödinger equation and thus found a

concrete wave function. How exactly we did this doesn't matter at �rst. The

wave function we have found can also be complex-valued. We should not

neglect the imaginary part, as we agreed at the beginning with our plane wave.

By omitting the imaginary part, the result of the Schrödinger equation would

no longer agree with the results of experiments. For an experimenter, however,

such complex functions are unfavorable because they are not directly

measurable. In addition, there is no direct interpretation of the wave

function yet. But how can we still use the calculated wave function in the

experiment, even though the complex wave function cannot be measured

directly?

This is where the statistical interpretation of the wave function, the so-
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called Copenhagen interpretation, comes into play. Although it does not say

what the wave function Ψ(x, t) means, it interprets its magnitude squared

|Ψ(x, t)|2. By forming the absolute value square, we obtain a real-valued

(measurable for the experimenter) function |Ψ |2.

The statistical interpretation makes use of the mathematical fact that the

square of magnitude is always positive |Ψ |2 > 0 and interprets it as

probability density. Because as you know: probabilities are always positive.

� In the one-dimensional case, the magnitude squared |Ψ |2 is a probability
per length.

� In the three-dimensional case, the magnitude squared |Ψ |2 is a

probability per volume.

15.2.1 Probability
Let's stick to the simple one-dimensional case. If we integrate the probability

density |Ψ(x, t)|2 over the spatial coordinate x within the distance between the

points x = a and x = b, then we get a probability P (t):

P (t) =

∫ b

a

|Ψ(x, t)|2 dx (15.18)

The integral of the probability density |Ψ(x, t)|2 indicates with which

probability P (t) the particle is located in the region between a and b

at time t. The probability can generally change over time.
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15.2.2 |Ψ |2 graphically

If we plot the magnitude square |Ψ(x, t)|2 as a function of the location x in a

diagram, then we can extract the following information from it:

� The probability P (t) at time t is the area under the |Ψ |2-curve.

� It is most likely to �nd the particle at the maxima of the |Ψ |2 curve.

� The most unlikely is to �nd the particle at theminima of the |Ψ |2 curve.

Note, however, that it is not possible to specify the probability P (t) of the

particle at a certain location (for example at x = a), but only for a spatial

region (here between x = a and x = b). In the case of a single point in space,

the integral 15.18 would be zero. That is the mathematical reason. The physical

reason why we cannot specify a probability for a single point is that there are

in�nitely many points in space in the region between a and b. If each of these

points in space were assigned a �nite probability, then the sum (i.e. the integral

15.18) of all probabilities would be in�nite, which would make no sense at all.

Therefore, we always calculate the probability of being in a spatial region.

15.3 Normalization of the wave function
In order for the statistical interpretation to be compatible with the Schrödinger

equation, the solution of the Schrödinger equation, that is, the wave function

Ψ , must satisfy the normalization condition. This states that the particle

must exist somewhere in space. In the one-dimensional case, it must therefore
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be found one hundred percent somewhere on the line between x = −∞ and

x = ∞.

In other words: The normalization condition states that the integral 15.18 for

the probability, integrated over the entire space, must always result in

1:

P =

∫ ∞

−∞
|Ψ(x, t)|2 dx = 1 (15.19)

The normalization condition 15.19 is a necessary condition that every

physically possible wave function must ful�l. After solving the

Schrödinger equation, the wave function Ψ(x, t) must be normalized with

the help of the normalization condition. "Normalization" means that we

have to calculate the integral 15.19 and then choose the amplitude of the wave

function so that the normalization condition is ful�lled.

It can be proven that the normalized wave function remains normalized for

all times t. If this were not the case, then the Schrödinger equation and the

statistical interpretation would be incompatible. There are of course solutions

to the Schrödinger equation, such as Ψ(x, t) = 0, which are not

normalizable. Such solutions are unphysical and we ignore them in

quantum mechanics. Wave functions that can be normalized with Eq. 15.19

are called square-integrable functions in mathematics. You will de�nitely

come across this term in your studies.

If you know with one hundred percent probability that the particle is located



15.3 Normalization of the wave function 157

between x = a and x = b, then you may reduce the integration limits in the

normalization condition 15.19 to this spatial region (this can sometimes

be useful to solve the integral):∫ b

a

|Ψ(x, t)|2 dx = 1 (15.20)

15.3.1 Example: Normalizing a wave function
An electron moves from the negative electrode to the positive electrode of a plate

capacitor. The two electrodes are at a distance of d from each other. You have

determined the following wave function by solving the Schrödinger equation:

Ψ(x, t) = A ei (kx−ωt) (15.21)

Our goal is to determine the factor A so that the integral over the magnitude

squared of this wave function is one.

You know with one hundred percent probability that the electron must be

between the two electrodes. If we place the negative electrode at x = 0 and the

positive electrode at x = d, then the electron is somewhere between these two

points. The normalization condition becomes:∫ d

0

|Ψ(x, t)|2 dx = 1 (15.22)

Next, we need to determine the magnitude squared |Ψ(x, t)|2. The magnitude
of the wave function is calculated in the same way as the magnitude of a vector.

This is where the power of the complex exponential function becomes apparent

for the �rst time. The following always applies: |eiφ| = 1. The magnitude

squared is therefore given by :

|Ψ(x, t)|2 = |A ei (kx−ωt)|2 (15.23)

= A2 |ei (kx−ωt)|2

= A2
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Let's insert the calculated magnitude squared into the normalization condition:

∫ d

0

A2 dx = 1 (15.24)

The amplitude A is independent of x, so it is a constant and we can place it in

front of the integral. And the integral simply results in d:

A2

∫ d

0

1 dx = 1 (15.25)

A2 d = 1

A =
1√
d

The normalized wave function for the electron is therefore:

Ψ(x, t) =
1√
d
ei (kx−ωt) (15.26)

Once we have normalized the wave function of a quantum particle, we can

not only �nd out the probability P (t) of a particle, but also the mean value

⟨x⟩ of the position and the mean value of many other observables (physical

quantities). For example, the mean value of the momentum ⟨p⟩, the velocity ⟨v⟩
or the kinetic energy ⟨Wkin⟩ of a quantum particle.

15.4 Three-dimensional Schrödinger equation
In your physics course, you will not only encounter a one-dimensional

Schrödinger equation, but also a two- or three-dimensional version. The

three-dimensional wave function can depend not only on one spatial

coordinate x, but on three spatial coordinates: Ψ(x, y, z, t). We can

combine the three spatial coordinates into one vector r: Ψ(r, t).

We can generalize the one-dimensional Schrödinger equation 15.17 to a three-

dimensional Schrödinger equation. This is not di�cult if you have read the

chapter 5 about the Nabla operator. Here is the one-dimensional Schrödinger
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equation again:

W Ψ = − ℏ2

2m

∂2Ψ

∂x2
+ WpotΨ (15.27)

In it, we have to extend the second spatial derivative with respect to x so that

the second spatial derivative with respect to y and z also appear in the three-

dimensional Schrödinger equation. To do this, we simply add these derivatives

to the spatial derivative with respect to x. Then we get the three-dimensional,

time-independent Schrödinger equation:

W Ψ = − ℏ2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

)
+ WpotΨ (15.28)

We can write Eq. 15.28 a little more compact with the Nabla operator.

To do this, factor out the wave function from the spatial derivatives:

W Ψ = − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ψ + WpotΨ (15.29)

The sum of the spatial derivatives in the brackets form a Laplace operator ∇·
∇ = ∇2 (sometimes also noted as ∆). This operator is the scalar product of two

nabla operators. This results in three-dimensional Schrödinger equation

expressed with Nabla operator:

W Ψ = − ℏ2

2m
∇2Ψ + WpotΨ (15.30)

So far, we have only learned about the time-independent Schrödinger

equation. You will have to use this regularly in the quantum mechanics

lecture. For example, in problems such as particle in a potential well, quantum

mechanical harmonic oscillator, tunnel e�ect and helium atom.
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15.5 Time-dependent Schrödinger equation
A quantum particle described by the time-independent Schrödinger equation

has a constant total energy W . We can therefore only use the time-independent

Schrödinger equation to describe quantum particles that do not change

their total energy.

But what if the total energyW of a quantum particle is not constant in time?

This can happen, for example, if the particle interacts with its environment

and its total energy increases or decreases as a result. For such a quantum

system, we need the time-dependent Schrödinger equation. This is what

it looks like in one spatial dimension:

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ WpotΨ (15.31)

The only di�erence to the time-independent Schrödinger equation is that the

total energy W becomes an operator W = iℏ ∂
∂t
. This operator is also

called time evolution operator.

15.6 Stationary Wave Function
Solving the time-dependent Schrödinger equation 15.31 is not that easy.

However, you can simplify the solution of this partial di�erential equation

considerably if you convert it into two ordinary di�erential equations.

One di�erential equation then only depends on the time t and the other only

on the spatial coordiante x. We do this separation into two ordinary

di�erential equations with the method �Separation of Variables�. This is a

very important method in physics to simplify partial di�erential equations and

make them easier to solve.

The only requirement for the Separation of Variables to work is that the

potential energy Wpot(x) does not depend on the time t (but it may

very well depend on the position x). The wave function itself can, of course,

still depend on both position and time.
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First, divide the time-dependent wave function Ψ(x, t) (that is, the total

solution) into two parts:

� Into a partial solution ψ(x), which only depends on the location x.

� Into a partial solution ϕ(t), which only depends on the time t.

This separation ansatz (ansatz is a German word for approach) turns the

total wave function into a product of the two partial solutions:

Ψ(x, t) = ψ(x)ϕ(t) (15.32)

The time-dependent Schrödinger equation thus becomes:

iℏ
∂

∂t
(ψ(x)ϕ(t)) = − ℏ2

2m

∂2

∂x2
(ψ(x)ϕ(t)) + Wpot ψ(x)ϕ(t) (15.33)

Not all wave functions can be separated into two partial solutions as in Eq.

15.32. However, since the Schrödinger equation is linear, we can form a linear

combination of such solutions and thus obtain all wave functions (including

those that cannot be separated). This is what makes variable separation so

powerful.

As you can see from the time-dependent Schrödinger equation 15.31, the time

derivative and the second spatial derivative occur there. Calculate the two

derivatives of the separation ansatz 15.32:

� Di�erentiate the separated wave function 15.32 with respect to time t:

∂Ψ

∂t
= ψ(x)

∂ϕ(t)

∂t
(15.34)

� Di�erentiate the separated wave function 15.32 once according to the

position x:

∂2Ψ

∂x2
= ϕ(t)

∂2ψ(x)

∂x2
(15.35)
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We can insert the time derivative 15.34 and the spatial derivative 15.35 into the

time-dependent Schrödinger equation 15.33:

iℏψ(x)
∂ϕ(t)

∂t
= − ℏ2

2m
ϕ(t)

∂2ψ(x)

∂x2
+ Wpot ψ(x)ϕ(t) (15.36)

In the following, we omit the position and time dependence in order to be able

to write the Schrödinger equation in a more compact form. Now we have to

reformulate the separated Schrödinger di�erential equation 15.36 so that its

left-hand side depends only on the time t and its right-hand side only on the

position x. We achieve this by dividing Eq. 15.36 by the product ψ ϕ:

iℏ
1

ϕ

∂ϕ

∂t
= − ℏ2

2m

1

ψ

∂2ψ

∂x2
+ Wpot (15.37)

What do we get out of it? Quite a lot! If we change the time t (which only

occurs on the left side), only the left side of the equation will change, while the

right side remains unchanged. However, if the right-hand side does not change

over time, it is constant. This constant is real, as a complex-valued constant

would violate the normalization condition. The right-hand side corresponds to

the time-constant total energy W :

iℏ
1

ϕ

∂ϕ

∂t
= W (15.38)

This is an ordinary di�erential equation for the partial solution ψ(x). We can

even write down the solution for this di�erential equation. It is easy to solve

with pencil and paper. The time-dependent partial solution is a plane

wave:

ψ(x) = ei
W
ℏ t (15.39)

Now let's look at the right-hand side of Eq. 15.37. If you change the variable

x on the right-hand side, the left-hand side of the equation remains constant

because it is independent of x. Because of the equality, the left-hand side must
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correspond to the same constant W :

W = − ℏ2

2m

1

ψ

∂2ψ

∂x2
+ Wpot (15.40)

If we multiply the di�erential equation 15.40 by ψ, we get the stationary,

time-independent Schrödinger equation for ψ:

W ψ = − ℏ2

2m

∂2ψ

∂x2
+ Wpot ψ (15.41)

By �stationary� we mean that the solution ψ(x) does not depend on time.

Therefore, we refer to the solution ψ(x) of a stationary Schrödinger equation as

stationary wave function ψ(x) or as stationary state.

What have we achieved overall with the separation approach? Instead of having

to solve a more complicated time-dependent Schrödinger equation for Ψ(x, t) =

ψ(x)ϕ(t),

iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ WpotΨ (15.42)

solve the stationary Schrödinger equation 15.41 for ψ(x) instead and

multiply this position-dependent partial solution with the

time-dependent partial solution 15.39. As a result, we obtain the total

solution of the time-dependent Schrödinger equation:

Ψ(x, t) = ψ(x) ei
W
ℏ t (15.43)

The solution 15.43 is very special, because its magnitude squared |Ψ(x, t)|2 is

time-independent! All other observables that describe the particle are also time-

independent. For example, a quantum particle described by the wave function

15.43 has a constant mean value of the energy ⟨W ⟩, constant mean value of the

momentum ⟨p⟩ and constant mean value of all other observables.
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15.7 Hamilton operator
You will not only encounter the time-dependent and independent Schrödinger

equation in this form:

W Ψ = − ℏ2

2m
∇2Ψ + WpotΨ (15.44)

iℏ
∂Ψ

∂t
= − ℏ2

2m
∇2Ψ + WpotΨ (15.45)

If you factor out the wave function, you get:

W Ψ =

(
− ℏ2

2m
∇2 + Wpot

)
Ψ (15.46)

iℏ
∂Ψ

∂t
=

(
− ℏ2

2m
∇2 + Wpot

)
︸ ︷︷ ︸

Ĥ

Ψ (15.47)

The operator in the brackets is called Hamilton operator Ĥ (sometimes also

called Hamiltonian):

Ĥ = − ℏ2

2m
∇2︸ ︷︷ ︸

Wkin

+ Wpot (15.48)

The Hamilton operator describes the total energy of a quantum particle.

You will also regularly encounter the representation of the Schrödinger equation

with the Hamilton operator:

Ĥ Ψ = W Ψ (15.49)

Ĥ Ψ = iℏ
∂Ψ

∂t
(15.50)

With the Hamilton operator, we can interpret the time-independent Schrödinger

equation as a eigenvalue equation. You should know what an eigenvalue

equation is from linear algebra. So you apply the Hamilton operator (think of
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it as matrix) to the eigenfunction Ψ (think of it as eigenvector). Then you

get the eigenvector Ψ on the right-hand side of the Schrödinger equation, which

is scaled with the corresponding energy eigenvalue W . The energy eigenvalues

W depend on the Hamilton operator used Ĥ and are discrete for most of the

Hamilton operators you will encounter in your studies. We say: The energy of

the quantum particle is quantized.

Thus we have transferred the problem of solving the Schrödinger

di�erential equation 15.47 to the problem of solving the eigenvalue

equation 15.50.

15.8 What you’ve learned
Let's summarize what you should have learned from the chapter 15:

� You now know how to motivate the time-independent Schrödinger

equation.

� You know what the wave function is and have become familiar with

the plane wave as a simple example of a wave function.

� You know the statistical interpretation of the wave function.

� You can normalize a wave function.

� You know the di�erence between the time-dependent and time-

independent Schrödinger equation.

� You know the di�erence between the one-dimensional and three-

dimensional Schrödinger equation.

� You know what the Hamilton operator is.

� You know what a stationary wave function is.

Remember that the Schrödinger equation is a non-relativistic equation. It

fails for quantum particles moving at almost the speed of light. Furthermore, it

does not naturally take into account the spin of a particle. These two problems

are only solved by its relativistic version, namely the Dirac equation. You will
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only learn about this in your Master's degree when you take course on quantum

�eld theory.

In the following Chapter 16 you will learn the representation of the wave

function as a state vector ("quantum mechanical state"). Advantage: You

can work with the state vector in (almost) the same way as with the usual

vectors that you know from linear algebra.



16. Bra-Ket Notation

More: en.fufaev.org/bra-ket-notation

Consider any one-dimensional wave function Ψ(x) describing a quantum

mechanical particle. We have omitted its time dependence Ψ(t, x) because it

is not relevant in this chapter. The value of the wave function, for instance, at

the location x1 is Ψ(x1), at the location x2 the function value is Ψ(x2), at the

location x3 the function value is Ψ(x3), and so forth. In this manner you can

assign to each point in space x the function value Ψ(x) of the wave function.

The sum of all these function values yields the shape of the wave function.

We can represent all these function values as a list of values. We can interpret

https://en.fufaev.org/bra-ket-notation
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this list of values as a column vector Ψ . The column vector then has the

following components:

Ψ =


Ψ(x1)

Ψ(x2)

Ψ(x3)

...

 =


Ψ1

Ψ2

Ψ3

...

 (16.1)

At the second equality sign, we have represented the function values more

compactly. Instead of writing the �rst component as Ψ(x1), we compactly

write it as Ψ1.

We can illustrate the column vector 16.1 as follows:

� The �rst component Ψ(x1) forms the �rst coordinate axis.

� The second component Ψ(x2) forms the second coordinate axis.

� The third component Ψ(x3) forms the third coordinate axis.

� and so forth.

We'll stick to only three components because I can't draw a four-dimensional

coordinate system. So, each component is assigned a coordinate axis. In this

way, the three components span a three-dimensional space. Once we add

an additional function value Ψ(x4), the space becomes four-dimensional, and

so on. We denote the vector Ψ representing a wave function Ψ(x) as a state

vector.
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In theory, there are of course in�nitely many x-values. Therefore, there are

also in�nitely many associated function values Ψ(x) as components of the

column vector. If there are in�nitely many function values, then the space in

which the state vector Ψ lives is in�nite-dimensional. Remember that this

space is not an in�nitely-dimensional position space but an abstract space.

This abstract space, where various quantum mechanical state vectors Ψ live,

is called a Hilbert space. In general, this is an in�nite-dimensional vector

space. However, it can also be �nite-dimensional. For example, spin states

Ψ↑ and Ψ↓, which describe the spin of a particle, reside in a two-dimensional

Hilbert space. That is, state vectors like the spin-up state Ψ↑ have only two

components:

Ψ↑ =

[
Ψ↑1

Ψ↑2

]
(16.2)

However, even approximating an in�nite-dimensional state with a column

vector 16.1 is incredibly useful. In numerical computations, we have no other

choice but to approximate the in�nite-dimensional state with a �nite number

of function values. There's simply no other way since your computer would

need in�nite memory for that. The more components we take in numerical

computation, the more accurate the state vector becomes, but the

computations become slower and more memory-intensive.

So, we can represent a quantum mechanical particle in two ways:

� as a wave function Ψ(x)

� as a state vector Ψ

16.1 Bra- and Ket-State Vectors

16.1.1 Ket vector
To better distinguish the particle's description as a state vector from its

description as a wave function, we enclose the state vector Ψ in arrow-like
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brackets:

|Ψ⟩ =


Ψ1

Ψ2

Ψ3

...

 (16.3)

The wave function Ψ , represented as a column vector 16.3, is called a ket

vector |Ψ⟩, and the arrow-like bracket points to the right. It doesn't matter

what you write inside the bracket. For example, you could have also noted

the ket vector as |Ψ(x)⟩. The only thing to consider is that the notation inside

the bracket clari�es to other readers which quantum mechanical system this ket

vector represents.

� So, when you see a ket |Ψ⟩, you know that it refers to the representation

of the quantum particle as a state vector.

� On the other hand, if you see Ψ(x) without ket notation, you know that it

refers to the representation of the quantum particle as a wave function.

16.1.2 Bra Vector
The vector |Ψ⟩†, which is the adjoint of the ket vector, is called a bra vector.

The symbol † is pronounced as �Dagger�. For a clever, compact notation, we

write the bra vector with a reversed arrow ⟨Ψ | instead of using the dagger

|Ψ⟩†.

To obtain the bra vector ⟨Ψ | adjoint to the ket vector |Ψ⟩, we need to perform

two operations:

� Transpose the ket vector |Ψ⟩. This turns it into a row vector:

|Ψ⟩T = [Ψ1, Ψ2, Ψ3, ...] (16.4)

� Complex-conjugate the transposed ket vector |Ψ⟩T. This operation
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adds asterisks to the components to obtain the bra vector:

⟨Ψ | = [Ψ ∗
1 , Ψ

∗
2 , Ψ

∗
3 , ...] (16.5)

In summary: The wave function Ψ(x) corresponds in vector representation to

the ket vector |Ψ⟩, and the row vector adjoint to the ket vector, denoted as ⟨Ψ |,
is the bra vector.

Since we've interpreted the wave function Ψ(x) as a ket vector |Ψ⟩, we can

practically work with the ket vector in much the same way as with ordinary

vectors you're familiar with from linear algebra. For example, we can form

a scalar product or tensor product between the bra or ket vectors.

What may be new to you, however, is that unlike vectors from linear algebra,

the components of the ket vector can be complex, and the number of

components can be in�nite.

16.2 Scalar and Inner Product
We can form the scalar product ⟨Φ | · |Ψ⟩ between a bra vector ⟨Φ | and a ket

vector |Ψ⟩. Here, we don't need to write the scalar product dot and can omit a

vertical line. We write ⟨Φ |Ψ⟩ instead of ⟨Φ | · |Ψ⟩ for brevity.

When the state vectors between which you form the scalar product live in an

in�nite-dimensional Hilbert space, we call this operation not a scalar

product but an inner product. However, the notation ⟨Φ |Ψ⟩ for the inner

product remains the same as in the case of the scalar product.

In a �nite n-dimensional Hilbert space, the written out scalar product ⟨Φ |Ψ⟩
between any bra vector ⟨Φ | and ket vector |Ψ⟩ looks like this:

⟨Φ |Ψ⟩ = [Φ1
∗,Φ2

∗,Φ3
∗, ...,Φn

∗]


Ψ1

Ψ2

Ψ3

...

Ψn

 (16.6)
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We can multiply the row and column vectors in 16.6 just as we do with the usual

matrix multiplication.:

⟨Φ |Ψ⟩ = Φ1
∗Ψ1 + Φ2

∗Ψ2 + Φ3
∗Ψ3 + ... + Φn

∗Ψn (16.7)

=
n

+
i=1

Φi
∗Ψi (16.8)

In the last step, we abbreviated the scalar product using a sum sign. Here,

n represents the dimension of the Hilbert space, that is, the number of

components of a state vector living in this Hilbert space. The dimension

n = ∞ of the Hilbert space can also be in�nite.

16.3 Continuous Quantum States
So far, we have discretized a quantum state |Ψ⟩ by omitting many function

values of the wave function Ψ(x). Just between the positions x1 and x2 alone,

there are in�nitely many more values. Why? Because the position

coordinate is a real number. This means there are in�nitely many components

between Ψ1 = Ψ(x1) and Ψ2 = Ψ(x2) that we have omitted in the column

vector representation:

|Ψ⟩ =



Ψ1

...

Ψ2

...

Ψ3

...


(16.9)

This means that representing a wave function Ψ(x) with a real-valued

argument x as a column vector is only an approximation and serves merely

for illustration purposes.

Similarly, the inner product 16.8 with the sum sign is not exact for states with

real-valued arguments. How can we make the inner product exact for these
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states? We need to switch to an integral. Therefore, we replace the sum sign

with an integral sign. We now consider the function values Φi and Ψi not at

discrete points xi but at all points x:

⟨Φ |Ψ⟩ =

∫
Φ(x)∗Ψ(x) dx (16.10)

So, to calculate the exact inner product of two wave functions Φ((x) and

Ψ(x), we need to evaluate the integral 16.10.

16.3.1 Overlap of Quantum States
What does this inner product of two quantum states actually tell us intuitively?

Similar to the scalar product, the inner product is a number that measures how

much two quantum states overlap. Let's consider two normalized quantum

states Φ and Ψ for simplicity:

� If the inner product is ⟨Φ |Ψ⟩ = 1, then the corresponding wave functions

Φ(x) and Ψ(x) completely overlap.

� If the inner product is ⟨Φ |Ψ⟩ = 0, then the wave functions Φ(x) and Ψ(x)

do not overlap at all.

� All values of the inner product ⟨Φ |Ψ⟩ between 1 and 0 indicate partial

overlap of the two wave functions.
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16.4 Orthonormal Quantum States
Let's consider two normalized and orthogonal (orthonormal) states |Ψi⟩ and
|Ψj⟩, denoted by variable indices i and j instead of �xed values. Then, their

scalar product ⟨Ψi |Ψj⟩ yields either 0 or 1. Therefore, they are suitable as basis
states. You should know this property from linear algebra when calculating the

scalar product of two basis vectors:

� The scalar product of two di�erent orthonormal states, i ̸= j, yields:

⟨Ψi |Ψj⟩ = 0.

� The scalar product of two identical orthonormal states, i = j, yields:

⟨Ψi |Ψj⟩ = 1.

These two cases can be combined in a single equation using the Kronecker

delta δij:

⟨Ψi |Ψj⟩ = δij (16.11)

16.5 Tensorproduct in Bra-Ket Notation
Another important operation between a bra and ket vector is the tensor

product: |Φ⟩ ⊗ ⟨Ψ |. We can omit the tensor symbol ⊗, because it is

immediately clear from the bra-ket notation that it is not a scalar or inner

product: |Φ⟩⟨Ψ |, since bra and ket vectors are interchanged here.

The result of the tensor product is a matrix:

� If the states |Φ⟩ and |Ψ⟩ each have two components, then |Φ⟩⟨Ψ | is a
2x2 matrix.

� If the states |Φ⟩ and |Ψ⟩ each have three components, then |Φ⟩⟨Ψ | is
a 3x3 matrix.
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� If the states |Φ⟩ and |Ψ⟩ each have n components, then |Φ⟩⟨Ψ | is an
n× n matrix.

As you know from matrix multiplication, in the tensor product, we multiply a

ket vector |Φ⟩, which is a column vector, with a bra vector ⟨Ψ |, which is a row

vector. If the states have three components, then we get a 3x3 matrix:

|Φ⟩⟨Ψ | =

Φ1

Φ2

Φ3

 [Ψ1
∗,Ψ2

∗,Ψ3
∗] =

Φ1Ψ1
∗ Φ1Ψ2

∗ Φ1Ψ3
∗

Φ2Ψ1
∗ Φ2Ψ2

∗ Φ2Ψ3
∗

Φ3Ψ1
∗ Φ3Ψ2

∗ Φ3Ψ3
∗

 (16.12)

You will encounter such matrices in form of density matrices very often in

quantum mechanics, for example, when learning about quantum

entanglement.

16.6 Projection Matrices
Let's take a normalized state |Ψ⟩, meaning the magnitude of this vector

is 1, and form the tensor product of this state with itself, then we obtain a

projection matrix |Ψ⟩⟨Ψ | (or projection operator, if speci�c components

are not considered):

|Ψ⟩⟨Ψ | =

Ψ1

Ψ2

Ψ3

 [Ψ1
∗,Ψ2

∗,Ψ3
∗] =

Ψ1Ψ1
∗ Ψ1Ψ2

∗ Ψ1Ψ3
∗

Ψ2Ψ1
∗ Ψ2Ψ2

∗ Ψ2Ψ3
∗

Ψ3Ψ1
∗ Ψ3Ψ2

∗ Ψ3Ψ3
∗

 (16.13)

If we apply a projection matrix to any ket vector |Φ⟩ (which may not be

normalized), then we multiply a matrix |Ψ⟩⟨Ψ | by a column vector |Φ⟩:

|Ψ⟩⟨Ψ | |Φ⟩ = |Ψ⟩⟨Ψ |Φ⟩ =

Ψ1Ψ1
∗ Ψ1Ψ2

∗ Ψ1Ψ3
∗

Ψ2Ψ1
∗ Ψ2Ψ2

∗ Ψ2Ψ3
∗

Ψ3Ψ1
∗ Ψ3Ψ2

∗ Ψ3Ψ3
∗


Φ1

Φ2

Φ3

 (16.14)

The special feature of a projection matrix is that it projects the state |Φ⟩
onto the state |Ψ⟩. In simple terms, it yields the part of the quantum state
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|Φ⟩ that overlaps with the quantum state |Ψ⟩. The result of the projection is

thus a ket vector |Ψ⟩⟨Ψ |Φ⟩, which describes the overlap of the quantum

states |Φ⟩ and |Ψ⟩.

16.6.1 Basis Transformation with Projection Matrices
Projection matrices are an important tool in theoretical physics for investigating

the overlap of quantum states. However, perhaps the most important use of

projection matrices is for e�ortless basis transformation. If we have any

quantum state |Φ⟩ and want to view it from a di�erent perspective, or

mathematically speaking, represent it in a di�erent basis, we �rst choose the

desired new basis: {|Ψi⟩}. As you hopefully know from linear algebra, this

is a set of orthonormal vectors |Ψ1⟩, |Ψ2⟩, |Ψ3⟩, and so on. Their number

equals the dimension of the Hilbert space in which these quantum states

live. In quantum mechanics, we refer to the basis vectors as basis states. For

describing particle spin, for example, we only need two basis states.

For the sake of illustration, let's assume that our desired basis consists of only

three basis states: {|Ψ1⟩, |Ψ2⟩, |Ψ3⟩}. With each of these basis states, we can

construct projection matrices: |Ψ1⟩⟨Ψ1 |, |Ψ2⟩⟨Ψ2 |, and |Ψ3⟩⟨Ψ3 |.

To represent a quantum state |Φ⟩ in this basis, we �rst form the sum of the

projection matrices:

3

+
i = 1

|Ψi⟩⟨Ψi | = |Ψ1⟩⟨Ψ1 | + |Ψ2⟩⟨Ψ2 | + |Ψ3⟩⟨Ψ3 | = I (16.15)

As we know from mathematics, the sum of the projection matrices forming

a basis is an identity matrix I. The fact that the sum yields an identity

matrix is crucial during basis transformation because we do not want to alter

the quantum state |Φ⟩. Multiplying an identity matrix by a column vector |Φ⟩
does not change this vector:

|Φ⟩ = I |Φ⟩ (16.16)
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Now, let's substitute the sum of the basis projection matrices 16.15 for the

identity matrix:

|Φ⟩ =
3

+
i = 1

|Ψi⟩⟨Ψi |Φ⟩ (16.17)

= (|Ψ1⟩⟨Ψ1 | + |Ψ2⟩⟨Ψ2 | + |Ψ3⟩⟨Ψ3 |) |Φ⟩ (16.18)

= |Ψ1⟩⟨Ψ1 |Φ⟩ + |Ψ2⟩⟨Ψ2 |Φ⟩ + |Ψ3⟩⟨Ψ3 |Φ⟩ (16.19)

= |Φ⟩ (16.20)

The resulting state |Φ⟩, although denoted the same as the original state |Φ⟩,
is now represented in the new basis {|Ψi⟩}. If we want to emphasize the new

basis, we can also assign it an index: |Φ⟩Ψ . I hope you now understand the

usefulness of the concept of projection matrices!

In general, we can represent a quantum state |Φ⟩ with n components using a

basis {|Ψi⟩} consisting of n basis states as follows:

|Φ⟩Ψ =
n

+
i = 1

|Ψi⟩⟨Ψi |Φ⟩ (16.21)

The basis change with a �nite number of basis states is, of course, only exact

when the states |Φ⟩ live in a �nite-dimensional Hilbert space. For states

with in�nitely many components, Eq. 16.21 is only an approximation of the

old state in the new basis. The approximation becomes more accurate as we

choose n larger. Thus, in computational physics, we can save memory by not

choosing n too large, but large enough to approximate the quantum state good

enough in the new basis.

Guess how the basis change for states with in�nitely many components can be

made exact? With an integral! To do this, replace the discrete summation with

a sum sign with a continuous summation with an integral:

|Φ⟩Ψ =

∫
dx |Ψ⟩⟨Ψ |Φ⟩ (16.22)
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16.7 Schrödinger Equation in Bra-Ket Notation
In Chapter 15.7, you learned about the Schrödinger equation as an eigenvalue

equation. Here it is again:

Ĥ Ψ = W Ψ

Ĥ Ψ = iℏ
∂Ψ

∂t

You will encounter this eigenvalue equation regularly in Bra-Ket notation. To

do so, replace the wave function Ψ with the ket vector:

Ĥ |Ψ⟩ = W |Ψ⟩ (16.23)

Ĥ |Ψ⟩ = iℏ
∂

∂t
|Ψ⟩ (16.24)

16.8 Mean Values in Bra-Ket Notation
We can utilize the familiar Bra-Ket notation to represent the mean value ⟨Ĥ⟩
of an operator Ĥ in the quantum state |Ψ⟩. Often physicists call the

mean value as expectation value - however, this terminology is misleading

and should not be used for the mean value ⟨Ĥ⟩. The notation ⟨Ĥ⟩ for the mean
value is a short representation of ⟨Ψ | Ĥ |Ψ⟩.

So, we obtain the mean value of an observable by sandwiching the operator Ĥ

between a Bra vector ⟨Ψ | and a Ket vector:

⟨Ĥ⟩ = ⟨Ψ | Ĥ |Ψ⟩ = ⟨Ψ | Ĥ Ψ⟩ (16.25)

For the last equal sign, we have taken advantage of the fact that Ĥ applied

to the ket vector |Ψ⟩ results in a new ket vector |Ĥ Ψ⟩. As you know, the

notation in | ⟩ is irrelevant as long as it is clear what this ket vector represents.

Now you should have a solid basic knowledge of bra-ket notation. You should

have learned the following from this chapter:
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� You know what bra and ket vectors are.

� You know how to form the scalar product and inner product.

� You know how to construct projection matrices in Bra-Ket notation.

� You know how to carry out a change of basis with projection matrices.





17. Represent Operators as
Matrices

If we choose a basis, we can represent an operator Ĥ as a matrix H. For

example, we can take the eigenbasis {|φi⟩} of Ĥ. Eigenbasis is the set of

eigenstates (eigenvectors) |φ1⟩, |φ2⟩, |φ3⟩, ... of Ĥ.

� If the operator Ĥ : H → H is a mapping between the two-dimensional

Hilbert spaces H, then the eigenbasis of Ĥ has two eigenstates {|φ1⟩, |φ2⟩}
and can be represented by a 2x2-matrix:

H =

[
⟨φ1 | Ĥ |φ1⟩ ⟨φ1 | Ĥ |φ2⟩
⟨φ2 | Ĥ |φ1⟩ ⟨φ2 | Ĥ |φ2⟩

]

� If the operator Ĥ : H → H is a mapping between the

three-dimensional Hilbert spaces H, then the eigenbasis of Ĥ has three

eigenstates {|φ1⟩, |φ2⟩, |φ3⟩} and can be represented by a 3x3-matrix:

H =

⟨φ1 | Ĥ |φ1⟩ ⟨φ1 | Ĥ |φ2⟩ ⟨φ1 | Ĥ |φ3⟩
⟨φ2 | Ĥ |φ1⟩ ⟨φ2 | Ĥ |φ2⟩ ⟨φ2 | Ĥ |φ3⟩
⟨φ3 | Ĥ |φ1⟩ ⟨φ3 | Ĥ |φ2⟩ ⟨φ3 | Ĥ |φ3⟩







18. Hermitian Operators

More: en.fufaev.org/hermitian-operators

Let's take a look at the mean value ⟨Ĥ⟩ of the operator Ĥ in the state |Ψ⟩. If
Ĥ is the Hamilton operator, then ⟨Ĥ⟩ describes the mean value of the total

energy of a quantum particle:

⟨Ĥ⟩ = ⟨Ψ | Ĥ Ψ⟩ (18.1)

=

∫
Ψ(x, t)∗

(
Ĥ Ψ(x, t)

)
dx (18.2)

The mean value of a physical quantity, as we know it from everyday life, is a

real number. In quantum mechanics, however, complex mean values can also

occur for some operators. Imagine that we want to calculate the local mean

value ⟨x̂⟩ or the energy mean value ⟨Ĥ⟩ and obtain a complex value as a result.

This is problematic, because what does a complex position or a complex energy

mean?

In quantum mechanics, we are therefore only interested in mean values ⟨Ĥ⟩
that are real. How can we demand this mathematically? Quite simple! A real

number, for example the number 5, remains unchanged if we complex conjugate

https://en.fufaev.org/hermitian-operators
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it: 5 = 5∗. A complex number, for example 4 + 2i, does not remain the same if

we complex conjugate it: (4 + 2i)∗ = 4− 2i.

So if the mean value is real, then it is equal to its complex conjugate

value:

⟨Ψ | Ĥ Ψ⟩ = ⟨Ψ | Ĥ Ψ⟩∗ (18.3)

We call the operator Ĥ whose mean value ⟨Ĥ⟩ is real, as a Hermitian

operator. A Hermitian operator therefore represents a measurable

quantity, such as momentum, position and energy. A quantity that we can

measure in an experiment is called an observable in quantum mechanics.

What does this mean for the mean value integral 18.2 if Ĥ is a Hermitian

operator? Let's take a look at this by calculating the complex conjugate mean

value ⟨Ψ | Ĥ Ψ⟩∗ by using the mean value integral 18.2:

⟨Ψ | Ĥ Ψ⟩∗ =

(∫
Ψ ∗(Ĥ Ψ) dx

)∗

(18.4)

=

(∫
(Ĥ Ψ)Ψ ∗ dx

)∗

=

∫
(Ĥ Ψ)∗ (Ψ ∗)∗ dx

=

∫
(Ĥ Ψ)∗Ψ dx

= ⟨Ĥ Ψ |Ψ⟩

We have discovered the following important property of Hermitian operators:

⟨Ψ | Ĥ Ψ⟩ = ⟨Ĥ Ψ |Ψ⟩ (18.5)

In order for our mean-has-to-be-real requirement 18.2 to be ful�lled, the operator

Ĥ must be interchangeable in the scalar product. It must therefore

not matter whether we �rst apply Ĥ to the Ket or Bra vector in the mean
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value calculation. So if you know that an operator is Hermitian, then move the

operator wherever you want in the Bra-Ket notation.

18.1 Useful properties of Hermitian operators
In addition to the useful property 18.5, a Hermitian operator has a bunch of

other useful properties.

Usually, if we want to move an operator Ĥ that acts on a Ket vector to the Bra

vector, we have take the adjoint Ĥ† of the operator:

⟨Ψ | Ĥ† Ψ⟩ = ⟨Ĥ Ψ |Ψ⟩ (18.6)

As you have learned, in the case of a Hermitian operator we do not have to do

this. A Hermitian operator is a self-adjoint operator:

Ĥ = Ĥ† (18.7)

To make it clear that Ĥ is a Hermitian operator, the mean value is also noted

as follows:

⟨Ψ | Ĥ Ψ⟩ = ⟨Ĥ Ψ |Ψ⟩ (18.8)

= ⟨Ψ | Ĥ |Ψ⟩

= ⟨Ψ | Ĥ† |Ψ⟩

A Hermitian operator has another important property that you must

remember for your quantum mechanics courses: The set of eigenstates

{|φi⟩} (eigenvectors) of a Hermitian operator can be used as a basis. This

property is so important that it has a name, namely the spectral theorem.

Take this to heart: You have a Hermitian operator in front of you. You can take

its eigenstates {|φi⟩} as a basis and thus represent any other state in this basis.

That's incredible and super useful!
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18.2 Examples of Hermitian Matrices
Most of the operators that you will encounter in your undergrad courses are

Hermitian operators. These include, for example, the momentum operator p̂,

the position operator x̂, the Hamiltonian operator Ĥ, the kinetic energy operator

Ŵkin and so on.

As you learned in Chapter 17, we can represent an operator as a matrix if we

choose a concrete basis in which to represent the operator. Let's look at a few

concrete examples of Hermitian matrices.

The σy spin matrix is Hermitian. If you transpose and complex-conjugate it,

you get the same matrix:

σy =

[
0 −i
i 0

]
=

[
0 −i
i 0

]∗

= (σy)
∗ (18.9)

The σx spin matrix is also a Hermitian matrix:

σx =

[
0 1

1 0

]
=

[
0 1

1 0

]∗

= (σx)
∗ (18.10)

And here is an example of a non-Hermitian matrix. If you transpose and complex

conjugate it, you get a completely di�erent matrix that is not equal to the

original matrix:[
1 2

−3i 0

]
̸=

[
1 2

−3i 0

]∗

=

[
1 3i

2 0

]
(18.11)



19. Angular Momentum

More: en.fufaev.org/quantum-angular-momentum

The angular momentum (more precisely: orbital angular momentum) L

of a classical particle is given by the cross product between the distance r of

the particle from the axis of rotation and the linear momentum p = mv of the

particle:

L = r × p =

y pz − z py

z px − x pz

x py − y px

 (19.1)

https://en.fufaev.org/quantum-angular-momentum
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The angular momentum L is therefore perpendicular to the vectors r and p due

to the cross product.

If we write out the cross product, we get the individual components L1, L2

and L3 of the angular momentum vector, which each indicate the magnitude of

angular momentum in the x, y and z directions:

� Angular momentum in the x direction is:

Lx = y pz − z py (19.2)

� Angular momentum in the y direction is:

Ly = z px − x pz (19.3)

� Angular momentum in the z direction is:

Lz = x py − y px (19.4)
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How do we turn these classical angular momentum components into quantum

mechanical angular momentum components? By putting little hats on them:

L̂x, L̂y and L̂z, in other words turning the angular momentum components

into operators. The spatial components x = x̂, y = ŷ and z = ẑ remain the

same. And the momentum components are replaced by the following axiomatic

mappings:

� Momentum component px becomes the operator: p̂x = −iℏ ∂x

� Momentum component py becomes the operator: p̂y = −iℏ ∂y

� Momentum component pz becomes the operator: p̂z = −iℏ ∂z

Here, ∂x,∂y and ∂z are derivative operators. When applied to a function, they

result in the derivative of this function with respect to x, y or z. Of course, a

single derivative makes no sense. For this reason, a momentum operator only

becomes useful when it is applied to a wave function. The result is a new

wave function modi�ed by the operator. With the axiomatic mappings, we have

quantized the classical orbital angular momentum:

� L̂x = −iℏ y ∂z + iℏ z ∂y = iℏ (z ∂y − y ∂z)

� L̂y = −iℏ z ∂x + iℏx ∂z = iℏ (x ∂z − z ∂x)

� L̂z = −iℏx ∂y + iℏ y ∂x = iℏ (y ∂x − x ∂y)
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19.1 Can We Measure Angular Momentum?
We have constructed the angular momentum operators L̂x, L̂y and L̂z. The

question now is: Do they represent observables? Or to put it another way:

Are they Hermitian operators? This is important because the angular

momentum components can only be measured in the experiment if they are

Hermitian operators.

A Hermitian operator L̂x is equal to its complex conjugate L̂x
†. Let's check that:

L̂x
† = (ŷ p̂z − ẑ p̂y)

† (19.5)

First, we apply the property of anti-linearity:

L̂x
† = (ŷ p̂z)

† − (ẑ p̂y)
† (19.6)

In the next step we will use the anti-distributivity. This swaps the two

operators in the parenthesis and the parenthesis disappears:

L̂x
† = p̂z

† ŷ† − p̂y
† ẑ† (19.7)

We know that the position operators ŷ, ẑ and momentum operators p̂z, p̂y are

Hermitian. Hermitian operators are equal to their adjoint. We can therefore

omit †:

L̂x
† = p̂z ŷ − p̂y ẑ (19.8)

The momentum and position operators may be interchanged here, because

operator p̂z = −iℏ ∂z di�erentiates with respect to the z-coordinate and ŷ = y

does not depend on z and therefore acts like a constant that can be moved

forward. The argumentation for the term p̂y ẑ is the same:

L̂x
† = ŷ p̂z − ẑ p̂y = L̂x (19.9)
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The expression obtained corresponds exactly to the L̂x operator. Similarly, we

can show that the L̂y and the L̂z operator are also Hermitian. Conclusion: We

can measure the angular momentum components of quantum particles

in an experiment. Perfect!

19.2 Can We Determine ALL Angular

Momentum Components?
In classical physics, in our macroscopic world, the values of all three angular

momentum components Lx, Ly and Lz exist - for example of a spinning

particle. All three components can therefore be determined exactly and

simultaneously.

In the quantum world, on the other hand, we have the Heisenberg

uncertainty principle, which makes it impossible to determine certain

observables exactly at the same time because one of the observables does not

inherently have an exact value if the other observable is measured exactly.

Momentum p̂y and position x̂ are an example of two observables that cannot

be determined exactly at the same time.

Formulated mathematically, the Heisenberg uncertainty principle states: If we

�rst apply the position operator x̂ to the wave function Ψ(x, y, z) and then the

momentum operator: p̂x x̂Ψ(x, y, z), then we get something di�erent than if

we �rst apply the momentum operator and then the position operator:

p̂x x̂Ψ(x, y, z). It matters whether we �rst measure the position or the

momentum of a quantum particle. As soon as we reverse the order of the

measurement, we get something completely di�erent for the momentum and

position. We say that the momentum and position are subject to the

Heisenberg uncertainty principle. The di�erence between the two

measurements is provided by the commutator [x̂, p̂x]. To do this, we

calculate the di�erence between the two measurements and factor out the wave
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function. The di�erence of the operators is the commutator of x̂ and p̂y:

p̂x x̂Ψ − p̂x x̂Ψ = (p̂x x̂ − p̂x x̂)Ψ (19.10)

= [x̂, p̂x] Ψ

= i ℏΨ

In the last step, we used the commutator of the position and momentum operator

[x̂, p̂x] = i ℏ.

� If the commutator is zero, then in principle it is possible to determine both

observables exactly at the same time.

� If the commutator is not zero, as in the case of [x̂, p̂x] = i ℏ, then it is

impossible to determine both observables exactly at the same time. Only

one of the observables, either p̂x or x̂, can be determined exactly.

With this knowledge, we can now ask: Can we know all the angular

momentum components of a quantum particle exactly at the same

time?

Short answer: No! To do this, we must use the commutators [L̂x, L̂z], [L̂y, L̂z]

and [L̂x, L̂y] of the angular momentum components. We will �nd that none of the

commutators is zero. It is therefore impossible to know two angular momentum

components at the same time.

To demonstrate this, let's look at the commutator [L̂x, L̂z] and show that L̂x

and L̂z are subject to the uncertainty principle. First, we use the de�nition of

the commutator:

[L̂x, L̂z] = L̂x L̂z − L̂z L̂x (19.11)

= (ŷ p̂z − ẑ p̂y) (x̂ p̂y − ŷ p̂x)

− (x̂ p̂y − ŷ p̂x) (ŷ p̂z − ẑ p̂y)

= ŷ p̂z x̂ p̂y − ŷ p̂z ŷ p̂x − ẑ p̂y x̂ p̂y

+ ẑ p̂y ŷ p̂x − x̂ p̂y ŷ p̂z + x̂ p̂y ẑ p̂y

+ ŷ p̂x ŷ p̂z − ŷ p̂x ẑ p̂y
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For the second equal sign, we have expressed the angular momentum operators

with position and momentum operators. For the third equal sign, we have

multiplied out the brackets.

Then we swap the operators so that some terms are canceled out. In the �rst

term, we can place x̂ at the beginning without problems: x̂ ŷ p̂z p̂y, because x̂

commutates with both ŷ and p̂z (their commutator is zero, so we can move

them back and forth). We can place the operator p̂y in front of p̂z without

problems: x̂ ŷ p̂y p̂z, but not in front of ŷ, because the commutator of [ŷ, p̂y] = iℏ
is not zero. Therefore, we must replace ŷ, p̂y with iℏ + p̂y ŷ: x̂ (iℏ+ p̂y ŷ) p̂z =

iℏ x̂ p̂z + x̂ p̂y ŷ p̂z. This cancels out the term x̂ p̂y ŷ p̂z:

[L̂x, L̂z] = iℏ x̂ p̂z − ŷ p̂z ŷ p̂x − ẑ p̂y x̂ p̂y (19.12)

+ ẑ p̂y ŷ p̂x − x̂ p̂y ŷ p̂z + x̂ p̂y ẑ p̂y

+ ŷ p̂x ŷ p̂z − ŷ p̂x ẑ p̂y

In the expression ŷ p̂z ŷ p̂x we can swap all operators without any problems and

cancel it out with the other term ŷ p̂x ŷ p̂z:

[L̂x, L̂z] = iℏ x̂ p̂z − ẑ p̂y x̂ p̂y + ẑ p̂y ŷ p̂x (19.13)

+ x̂ p̂y ẑ p̂y − ŷ p̂x ẑ p̂y

And also in the expression ẑ p̂y x̂ p̂y operators can be swapped so that the

operator that is related to the expression x̂ p̂y ẑ p̂y cancels out:

[L̂x, L̂z] = iℏ x̂ p̂z − ẑ p̂y ŷ p̂x − ŷ p̂x ẑ p̂y (19.14)

Now we come back to a term ŷ p̂x ẑ p̂y, where the swapping is not simply possible.

First, we can swap ŷ and p̂x: p̂x ŷ ẑ p̂y and then ẑ with p̂y, so that we have the

following expression: p̂x ŷ p̂y ẑ. To now swap ŷ with p̂y, we have to use their

product because of the non-vanishing commutator [ŷ, p̂y] = iℏ with iℏ + p̂y ŷ:
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p̂x (iℏ+ p̂y ŷ) ẑ = iℏ p̂x ẑ − p̂x p̂y ŷ ẑ. This turns the commutator into:

[L̂x, L̂z] = iℏ x̂ p̂z − ẑ p̂y ŷ p̂x − iℏ p̂x ẑ − p̂x p̂y ŷ ẑ (19.15)

In this expression ẑ p̂y ŷ p̂x we swap ẑ with p̂x: p̂x p̂y ŷ ẑ and can thus cancel it

out:

[L̂x, L̂z] = iℏ x̂ p̂z − iℏ p̂x ẑ (19.16)

= iℏ (x̂ p̂z − p̂x ẑ)

= iℏ L̂y

As you can see, the commutator [L̂x, L̂z] is not zero, so it is impossible to know

L̂x and L̂z simultaneously with arbitrary precision. The other two commutators

can be derived in the same way:

[L̂y, L̂z] = iℏ L̂x (19.17)

[L̂x, L̂y] = iℏ L̂z

We can easily illustrate this fundamental uncertainty of the angular

momentum components. Let's consider a classical particle that moves on a

circular path. It therefore has an angular momentum L. All three angular

momentum components are exactly �xed, so L has a �xed direction.
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What if it were a quantum particle? Let's assume that we have measured the

angular momentum component L̂z of the quantum particle. We have thus

exactly determined its angular momentum component Lz. Due to the

non-vanishing commutators, the other two angular momentum components Lx

and Ly have no concrete value. The direction of the total angular momentum

vector L is no longer clearly given, but lies anywhere on a cone mantle.

Based on the cone in the illustration, we can already guess that although the

direction of L is not unique, the length of the L vector is unique. We
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can determine the length of the L vector using the sum of the squares of the

angular momentum operators:

L̂2 = L̂x
2 + L̂y

2 + L̂z
2 (19.18)

This sum is brie�y noted as the L̂2 operator. This operator is Hermitian, so

it represents an observable, namely the length of the angular momentum

vector squared. And the great thing is: This operator commutes with each

angular momentum component L̂x, L̂y and L̂z. This is very good, because

it allows us to determine not only one of the angular momentum components

of a quantum particle exactly, but also the magnitude of the total angular

momentum:

L̂ =

√
L̂x

2 + L̂y
2 + L̂z

2 (19.19)

This would be very bad for physics if the magnitude of the total angular

momentum did not exist exactly at all times. Without a �xed, exact total

angular momentum, the law of conservation of angular momentum in quantum

mechanics would not work at all.

19.3 Quantum Numbers l and m

Let's use the Bra-Ket notation and treat operators as matrices and wave

functions as Ket vectors (states). A commutator not only tells us whether two

observables can be measured exactly at the same time, but also whether the

associated operators share eigenstates {|Ψi⟩}.

If the commutator [L̂2, L̂z] vanishes (and it does), then we know that there is a

state |Ψ⟩, which is simultaneously both an eigenstate of L̂2 and an eigenstate

of L̂z.

� If L̂2 operator is applied to the state |Ψ⟩, which is an eigenstate of this

operator, then the result is an eigenstate scaled by the eigenvalue: In

the case of L̂2, the eigenvalue returns the magnitude of the total angular



19.3 Quantum Numbers l and m 197

momentum squared:

L̂2 |Ψ⟩ = L2 |Ψ⟩ (19.20)

� And if L̂z is applied to the state |Ψ⟩, which is also an eigenstate of L̂2, then

we again get the scaled eigenstate with a di�erent eigenvalue. In the case

of L̂z, this eigenvalue represents the magnitude of the angular momentum

component in the z-direction:

L̂z |Ψ⟩ = Lz |Ψ⟩ (19.21)

Using the ladder operators, we can derive the eigenvalues L2 and Lz a little

more precisely. Here I give the famous result that probably every chemist knows.

The eigenvalues L2 are a multiple of ℏ2:

L̂2 |Ψ⟩ = L2 |Ψ⟩ (19.22)

= l (l + 1) ℏ2 |Ψ⟩

The eigenvalue l (l+1) ℏ2 is determined by a integer or half-integer number

l, which we call angular momentum quantum number. This quantum

number can have the following values:

l = 0,
1

2
, 1,

3

2
, 2, ... (19.23)

Consequently, the total angular momentum squared L2 cannot take on any

continuous value, but only the following discrete values, which are determined

by the angular momentum quantum number:

L2 = 0, 0.75ℏ2, 2ℏ2, 3.75ℏ2, 6ℏ2, ... (19.24)

Let's take the square root of the magnitude square. The magnitude L of the
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total angular momentum is quantized:

L = 0,
√
0.75ℏ,

√
2ℏ,

√
3.75ℏ,

√
6ℏ2, ... (19.25)

The eigenvalues Lz of the L̂z angular momentum operator are a

multiple of ℏ:

L̂z |Ψ⟩ = Lz |Ψ⟩ (19.26)

= m ℏ |Ψ⟩

The quantum number m is called the magnetic quantum number and it can

only take on values between m = −l and m = l in +1 steps. The L̂z angular

momentum component can therefore not take on continuous values as in classical

physics - the L̂z angular momentum component is quantized.

Example: If a quantum particle has a total angular momentum L = 2(2 +

1)ℏ2 = 6ℏ2, represented by the angular momentum quantum number l = 2,

then its magnetic quantum number can take on m = −2,−1, 0, 1, 2 values and

no others. The Lz angular momentum component of this quantum particle can

only have 5 possible values: Lz = −2ℏ,−1ℏ, 0, 1ℏ, 2ℏ.

Let's summarize what you should take away from the 19 chapter:

� You now know how to quantize classical angular momentum.



� You know how to show that the angular momentum components are

Hermitian.

� You have learned that all angular momentum components are

subject to the uncertainty principle and why only one of the

components can be determined exactly.

� You have learned how to work with angular momentum

commutators.

� You know what the L̂2 operator is good for.

� You know the possible eigenvalues of L̂z and L̂2.





The End

If you enjoyed the book, it would immensely help me if you could leave a brief

review on Amazon with a rating. Even more important is that you send me

any mistakes, suggestions for improvement, or any unclear sections as

soon as possible to the email alexander@fufaev.org so that I can address them

immediately.

May physics be with you!
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