Formula: Bohr Model Orbital angular momentum Principal quantum number
$$L_{\class{red}{n}} ~=~ \class{red}{n} \, \hbar$$
$$L_{\class{red}{n}} ~=~ \class{red}{n} \, \hbar$$
$$\class{red}{n} ~=~ \frac{L_\class{red}{n}}{\hbar}$$
Orbital angular momentum
$$ L_{\class{red}{n}} $$ Unit $$ \mathrm{Js} $$
Orbital angular momentum of the electron in the \(\class{red}{n}\)-th state. It can be - according to the Bohr model - only a multiple of the reduced Planck's constant \( \hbar \), so that the electron orbits the nucleus in a stable orbit.
Principal quantum number
$$ \class{red}{n} $$ Unit $$ - $$
Principal quantum number is a natural number \( \class{red}{n} ~\in~ \{1,2,3...\} \) and quantizes angular momentum in the Bohr model as a multiple of \(\hbar\).
Reduced Planck's constant
$$ \hbar $$ Unit $$ \mathrm{Js} = \frac{ \mathrm{kg} \, \mathrm{m}^2 }{ \mathrm{s} } $$
Reduced Planck's constant is a physical constant (of quantum mechanics) and has the value: \( \hbar ~=~ \frac{h}{2\pi} ~=~ 1.054 \,\cdot\, 10^{-34} \, \text{Js} \).