Formula: Non-Uniform Circular Motion Tangential acceleration Angular acceleration Radius
$$\class{blue}{a_{\text{tan}}} ~=~ r \, \class{red}{\alpha}$$
$$\class{blue}{a_{\text{tan}}} ~=~ r \, \class{red}{\alpha}$$
$$\class{red}{\alpha} ~=~ \frac{ \class{blue}{a_{\text{tan}}} }{r}$$
$$r ~=~ \frac{ \class{blue}{a_{\text{tan}}} }{ \class{red}{\alpha} }$$
Tangential acceleration
$$ \class{blue}{a_{\text{tan}}} $$ Unit $$ \frac{\mathrm{m}}{\mathrm{s}^2} $$
Acceleration of the body tangential to the circular orbit, that is parallel to the orbital velocity.
Angular acceleration
$$ \class{red}{\alpha} $$ Unit $$ \frac{\mathrm{rad}}{\mathrm{s}^2} $$
Angular acceleration is the change in angular velocity \(\omega\) per second. If the angular acceleration is not zero, the body rotates faster and faster on the circular orbit.
Radius
$$ r $$ Unit $$ \mathrm{m} $$
Radius of the circular orbit.