Formula: Photon Energy Per Mole Wavelength Avogadro constant Speed of light
$$W_{\text{mol}} ~=~ N_{\text A} \, h \, \frac{c}{\lambda}$$
$$W_{\text{mol}} ~=~ N_{\text A} \, h \, \frac{c}{\lambda}$$
$$\lambda ~=~ N_{\text A} \, h \, \frac{c}{ W_{\text p} }$$
Photon energy per mole
$$ W_{\text{mol}} $$ Unit $$ \frac{\mathrm{J}}{\mathrm{mol}} $$
Photon energy per mole indicates the energy of \( 6 \cdot 10^{23} \) photons. This amount of photons makes up one mole.
Wavelength
$$ \lambda $$ Unit $$ \mathrm{m} $$
Wavelength of the used light. The smaller the wavelength, the greater the energy of one mole of photons.
Avogadro constant
$$ N_{\text A} $$ Unit $$ \frac{1}{\mathrm{mol}} $$
The Avogadro constant is a physical constant with the value \( N_{\text A} ~=~ 6 \cdot 10^{23} \, \frac{1}{\mathrm{mol}} \) and represents the number of photons that are in one mole.
Planck's Constant
$$ h $$ Unit $$ \mathrm{Js} $$
Planck's constant \( h \) is a physical constant from quantum mechanics and has the following exact value:
$$ h ~=~ 6.626 \, 070 \, 15 ~\cdot~ 10^{-34} \, \mathrm{Js} $$
Speed of light
$$ c $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$
Speed of light is a physical constant and indicates how fast light travels in empty space (vacuum). It has the following exact value in vacuum:
$$ c ~=~ 299 \, 792 \, 458 \, \frac{ \mathrm{m} }{ \mathrm{s} } $$