Formula: Gamma Factor (Lorentz Term) Lorentz Factor Velocity Speed of light
$$\gamma ~=~ \frac{1}{\sqrt{1 ~-~ \frac{\class{blue}{v}^2}{c^2}}}$$
$$\gamma ~=~ \frac{1}{\sqrt{1 ~-~ \frac{\class{blue}{v}^2}{c^2}}}$$
$$\class{blue}{v} ~=~ \sqrt{ 1 - \frac{1}{\gamma} } \, c$$
$$c ~=~ \left( 1 - \frac{1}{\gamma} \right)^{-1/2} \, \class{blue}{v}$$
Lorentz Factor
$$ \gamma $$ Unit $$ - $$
The Lorentz factor occurs in the relativistic equations and gives the factor by which, for example, time \(t'\) in a moving reference frame A differs from time \(t'\) in a reference frame B at rest: \( t' = \gamma \, t\). The Lorentz factor is always greater than 1.
Velocity
$$ \class{blue}{\boldsymbol v} $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$
Velocity of the reference frame moving relative to a specified system at rest.
Speed of light
$$ c $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$
Vacuum light speed is the maximum speed in our universe and has the value: \( c = 299 \, 792 \, 458 \, \frac{\mathrm m}{\mathrm s} \).