Formula: Photon Energy Per Mole Frequency Avogadro constant
$$W_{\text{mol}} ~=~ N_{\text A} \, h \, f$$
$$W_{\text{mol}} ~=~ N_{\text A} \, h \, f$$
$$f ~=~ \frac{ W_{\text{mol}} }{ N_{\text A} \, h }$$
Photon energy per mole
$$ W_{\text{mol}} $$ Unit $$ \frac{\mathrm{J}}{\mathrm{mol}} $$
Photon energy per mole indicates the energy of \( 6 \cdot 10^{23} \) photons. This amount of photons makes up one mole.
Frequency
$$ f $$ Unit $$ \mathrm{Hz} = \frac{ 1 }{ \mathrm{s} } $$
Frequency of the used light. The greater the frequency, the greater the energy of one mole of photons.
Avogadro constant
$$ N_{\text A} $$ Unit $$ \frac{1}{\mathrm{mol}} $$
The Avogadro constant is a physical constant with the value \( N_{\text A} ~=~ 6 \cdot 10^{23} \, \frac{1}{\mathrm{mol}} \) and represents the number of photons that are in one mole.
Planck's Constant
$$ h $$ Unit $$ \mathrm{Js} = \frac{ \mathrm{kg} \, \mathrm{m}^2 }{ \mathrm{s} } $$
Planck's constant \( h \) is a physical constant from quantum mechanics and has the following exact value:
$$ h ~=~ 6.626 \, 070 \, 15 ~\cdot~ 10^{-34} \, \mathrm{Js} $$