Formula: Lorentz Force on a Charge in a Magnetic Field Magnetic force Magnetic flux density (B-field) Velocity Electric charge Angle
$$\class{green}{F} ~=~ q \, \class{blue}{v} \, \class{violet}{B} \, \sin(\alpha)$$
$$\class{green}{F} ~=~ q \, \class{blue}{v} \, \class{violet}{B} \, \sin(\alpha)$$
$$\class{violet}{B} ~=~ \frac{ \class{green}{F} }{ \class{blue}{v} \, q \, \, \sin(\alpha)}$$
$$\class{blue}{v} ~=~ \frac{ \class{green}{F} }{ q \, \class{violet}{B} \, \sin(\alpha) }$$
$$q ~=~ \frac{ \class{green}{F} }{ \class{blue}{v} \, \class{violet}{B} \, \sin(\alpha) }$$
$$\alpha ~=~ \arcsin\left( \frac{ \class{green}{F} }{ q \, \class{blue}{v} \, \class{violet}{B} } \right)$$
Magnetic force
$$ \class{green}{F} $$ Unit $$ \mathrm{N} $$
Magnetic force acts on a charge \( q \) when it moves with velocity \( \class{blue}{v} \) through magnetic field \( \class{violet}{B} \).
Magnetic flux density (B-field)
$$ \class{violet}{B} $$ Unit $$ \mathrm{T} = \frac{\mathrm{kg}}{\mathrm{A} \, \mathrm{s}^2} $$
Magnetic flux density indicates how strong the magnetic field is in which the charge moves. The greater the magnetic flux density, the greater the magnetic force.
Velocity
$$ \class{blue}{\boldsymbol v} $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$
Velocity of the charged particle in the magnetic field. The greater the velocity of the charged particle, the greater the magnetic force.
Electric charge
$$ q $$ Unit $$ \mathrm{C} = \mathrm{As} $$
Electric charge can be repulsive or attractive (e.g. a proton, electron). The greater the electric charge, the greater the magnetic force.
Angle
$$ \alpha $$ Unit $$ - $$
Angle between the velocity direction of the particle and the magnetic field direction. If velocity and magnetic field are perpendicular to each other, the angle is 90 degrees. The sine of 90 degrees is 1.