Formula: Circular Motion Centripetal acceleration Radius Period
$$a_{ \text z } ~=~ \frac{4\pi^2 \, r}{ T^2 }$$
$$a_{ \text z } ~=~ \frac{4\pi^2 \, r}{ T^2 }$$
$$r ~=~ \frac{a_{ \text z } \, T^2}{ 4\pi^2 }$$
$$T ~=~ \sqrt{ \frac{ 4\pi^2 \, r }{ a_{ \text z } } }$$
Centripetal acceleration
$$ a_{\text z} $$ Unit $$ \frac{\mathrm{m}}{\mathrm{s}^2} $$
It is the acceleration experienced by a body (e.g. a planet, a particle) moving on a circular path. The centripetal acceleration points like the centripetal force to the center of the circle (in radial direction).
Radius
$$ r $$ Unit $$ \mathrm{m} $$
Radius of the circular trajectory. This is the distance from the center of the circle to the orbiting body.
Period
$$ T $$ Unit $$ \mathrm{s} $$
Duration of one revolution.