Formula: Circular Motion Force Radius Frequency Mass
$$F_{ \text z } ~=~ 4\pi^2 \, f^2 \, \class{brown}{m} \, r$$
$$F_{ \text z } ~=~ 4\pi^2 \, f^2 \, \class{brown}{m} \, r$$
$$r ~=~ \frac{ F_{ \text z }}{4\pi^2 \, f^2 \, \class{brown}{m}}$$
$$f ~=~ \frac{1}{2\pi} \sqrt{ \frac{ F_{ \text z } }{ \class{brown}{m} \, r } }$$
$$\class{brown}{m} ~=~ \frac{ F_{ \text z }}{4\pi^2 \, f^2 \, r}$$
Centripetal force
$$ F_{ \text z } $$ Unit $$ \mathrm{N} = \frac{\mathrm{kg} \, \mathrm{m}}{\mathrm{s}^2} $$
Centripetal force is a force that keeps a body on a circular path and points to the center of the circle.
Radius
$$ r $$ Unit $$ \mathrm{m} $$
Radius of the circular path. In other words, it is the distance from the center of the circle to the circling body.
Frequency
$$ f $$ Unit $$ \mathrm{Hz} = \frac{ 1 }{ \mathrm{s} } $$
The frequency indicates how many revolutions per second the body makes.
Mass
$$ \class{brown}{m} $$ Unit $$ \mathrm{kg} $$
Mass of the body on the circular path.