Formula: Circular Motion Centripetal force Radius Period Mass
$$F_{ \text z } ~=~ \frac{4\pi^2 \, \class{brown}{m} \, r}{ T^2 }$$
$$F_{ \text z } ~=~ \frac{4\pi^2 \, \class{brown}{m} \, r}{ T^2 }$$
$$r ~=~ \frac{ F_{ \text z } \, T^2}{ 4\pi^2 \, \class{brown}{m} }$$
$$T ~=~ 2\pi \sqrt{ \frac{ r \, \class{brown}{m} }{ F_{ \text z } } }$$
$$\class{brown}{m} ~=~ \frac{ F_{ \text z } \, T^2}{ 4\pi^2 \, r }$$
Centripetal force
$$ F_{ \text z } $$ Unit $$ \mathrm{N} $$
Centripetal force is a force that keeps a body on a circular path and points to the center of the circle.
Radius
$$ r $$ Unit $$ \mathrm{m} $$
Radius of the circular path. This is the distance from the center of the circle to the rotating body.
Period
$$ T $$ Unit $$ \mathrm{s} $$
Duration of one revolution.
Mass
$$ \class{brown}{m} $$ Unit $$ \mathrm{kg} $$
Mass of the body on the circular path.