Formula: Series Circuit of Resistors Voltage Individual voltages
$$U ~=~ U_1 ~+~ U_2 ~+~ U_3 ~+~ ... ~+~ U_n$$
$$U ~=~ U_1 ~+~ U_2 ~+~ U_3 ~+~ ... ~+~ U_n$$
Voltage
$$ U $$ Unit $$ \mathrm{V} = \frac{ \mathrm J }{ \mathrm C } = \frac{ \mathrm{kg} \, \mathrm{m}^2 }{ \mathrm{A} \, \mathrm{s}^3 } $$
The total voltage (i.e. the applied source voltage) is the sum of the individual voltages.
The following voltages are applied to three resistors: \(U_1 = 200 \, \mathrm{V} \), \(U_2 = 50 \, \mathrm{V} \) and \(U_3 = 100 \, \mathrm{V} \). Then the total voltage is their sum: \begin{align} U &~=~ 200 \, \mathrm{V} ~+~ 50 \, \mathrm{V} ~+~ 100 \, \mathrm{V} \\\\ &~=~ 350 \, \mathrm{V} \end{align}
Individual voltages
$$ U_1, U_2, U_3, ..., U_n $$ Unit $$ \mathrm{V} $$- \(U_1\) is the voltage across the first resistor.
- \(U_2\) is the voltage across the second resistor.
- \(U_3\) is the voltage across the third resistor.
- And so on...