Formula: Parallel Circuit of Resistors Electric current Individual currents
$$\class{red}{I} ~=~ \class{red}{I_1} ~+~ \class{red}{I_2} ~+~ \class{red}{I_3} ~+~ ... ~+~ \class{red}{I_n} $$
$$\class{red}{I} ~=~ \class{red}{I_1} ~+~ \class{red}{I_2} ~+~ \class{red}{I_3} ~+~ ... ~+~ \class{red}{I_n} $$
Electric current
$$ \class{red}{\boldsymbol I} $$ Unit $$ \mathrm{A} = \frac{ \mathrm C }{ \mathrm s } $$
Total current flowing through the main wire of a series circuit of resistors. The total current is the sum of the individual currents.
The following currents flow through three resistors connected in parallel: \(\class{red}{I_1} = 2 \, \mathrm{A} \), \(\class{red}{I_2} = 5 \, \mathrm{A} \), and \(\class{red}{I_3} = 1 \, \mathrm{A} \). Then the total current is given by: \begin{align} \class{red}{I} &~=~ 2 \, \mathrm{A} ~+~ 5 \, \mathrm{A} ~+~ 1 \, \mathrm{A} \\ &~=~ 8 \, \mathrm{A} \end{align}
Individual currents
$$ \class{red}{I_1}, \class{red}{I_2}, \class{red}{I_3}, ..., \class{red}{I_n} $$ Unit $$ \mathrm{A} $$- \(\class{red}{I_1}\) is the current flowing through the first resistor.
- \( \class{red}{I_2}\) is the current flowing through the second resistor.
- \( \class{red}{I_3}\) is the current flowing through the third resistor.
- And so on...