#
Formula: **Series Circuit of Capacitors**

$$U ~=~ U_1 ~+~ U_2 ~+~ U_3 ~+~ ... ~+~ U_n$$
$$U ~=~ U_1 ~+~ U_2 ~+~ U_3 ~+~ ... ~+~ U_n$$

## Voltage

`$$ U $$`Unit

`$$ \mathrm{V} = \frac{ \mathrm J }{ \mathrm C } = \frac{ \mathrm{kg} \, \mathrm{m}^2 }{ \mathrm{A} \, \mathrm{s}^3 } $$`

The total voltage (i.e. the applied source voltage) of capacitors connected in series is the sum of the individual voltages.

The following voltages are across the three capacitors at the time \(t\): \(U_1 = 200 \, \mathrm{V} \), \(U_2 = 50 \, \mathrm{V} \) and \(U_3 = 100 \, \mathrm{V} \). Then the total voltage is their sum:
`
\begin{align}
U(t) &~=~ 200 \, \mathrm{V} ~+~ 50 \, \mathrm{V} ~+~ 100 \, \mathrm{V} \\\\
&~=~ 350 \, \mathrm{V}
\end{align}
`

## Individual voltages

`$$ U_1, U_2, U_3, ..., U_n $$`Unit

`$$ \mathrm{V} $$`

- \(U_1\) is the voltage at the
*first*capacitor. - \(U_2\) is the voltage at the
*second*capacitor. - \(U_3\) is the voltage at the
*third*capacitor. - And so on...