Formula: Stefan-Boltzmann Law Power Surface area Temperature Stefan-Boltzmann constant
$$\class{green}{P} ~=~ \sigma \, A \, {\class{red}{T}}^4$$
$$\class{green}{P} ~=~ \sigma \, A \, {\class{red}{T}}^4$$
$$A ~=~ \frac{ \class{green}{P} }{ \sigma \, \class{red}{T}^4 }$$
$$\class{red}{T} ~=~ \sqrt[4]{ \frac{ \class{green}{P} }{ \sigma \, A } }$$
$$\sigma ~=~ \frac{ \class{green}{P} }{ A \, {\class{red}{T}}^4 }$$
Radiant power
$$ \class{green}{P} $$ Unit $$ \mathrm{W} = \frac{\mathrm J}{\mathrm s} $$
Radiant power [J/s] is the energy emitted by a black body per time.
Surface area
$$ A $$ Unit $$ \mathrm{m}^2 $$
Surface area of a black body (for example of the sun).
Temperature
$$ \class{red}{T} $$ Unit $$ \mathrm{K} $$
Surface temperature of the black body.
Stefan-Boltzmann constant
$$ \sigma $$
The Stefan-Boltzmann constant has the value \( \sigma = 5.67 \cdot 10^{-8} \, \frac{\mathrm J}{\mathrm{m}^2 \, \mathrm{K}^4 \, \mathrm{s}} \).