Formula: Bohr Model Circumference Principal quantum number De Broglie wavelength
$$U_{\class{red}{n}} ~=~ \class{red}{n} \, \lambda_{\text{dB}}$$
$$U_{\class{red}{n}} ~=~ \class{red}{n} \, \lambda_{\text{dB}}$$
$$\class{red}{n} ~=~ \frac{ U_{\class{red}{n}} }{ \lambda_{\text{dB}} }$$
$$\lambda_{\text{dB}} ~=~ \frac{ U_{\class{red}{n}} }{ \class{red}{n} }$$
Circumference
$$ U_{\class{red}{n}} $$ Unit $$ \mathrm{m} $$
The quantized circumference of the orbit of an electron in the \(\class{red}{n}\)-th state in the framework of the Bohr model.
Principal quantum number
$$ \class{red}{n} $$ Unit $$ - $$
The principal quantum number \( \class{red}{n} = 1, 2, 3, ...\) numbers the discrete energy states of an electron in the atom.
De Broglie wavelength
$$ \lambda_{\text{dB}} $$ Unit $$ \mathrm{m} $$
The de Broglie wavelength of an electron in the \( \class{red}{n} \)-th state.