Formula: Kundt's Tube Tube length Wavelength Number of nodes
$$L ~=~ \frac{ \class{blue}{\lambda} }{4} \, \left( 2 \class{red}{n} - 1 \right)$$
$$L ~=~ \frac{ \class{blue}{\lambda} }{4} \, \left( 2 \class{red}{n} - 1 \right)$$
$$\class{blue}{\lambda} ~=~ \frac{ 4L }{ \left( 2 \class{red}{n} - 1 \right) }$$
$$\class{red}{n} ~=~ \frac{ 2L }{ \class{blue}{\lambda} } + \frac{1}{2}$$
Tube length
$$ L $$ Unit $$ \mathrm{m} $$
The tube can only have certain lengths so that a standing wave is formed in the tube.
Wavelength
$$ \class{blue}{\lambda} $$ Unit $$ \mathrm{m} $$
Wavelength of the acoustic sound directed into the tube.
Number of nodes
$$ \class{red}{n} $$ Unit $$ - $$
A natural number \( \class{red}{n} = 0, 1, 2, \ldots \) that specifies the number of vibration nodes and defines the possible lengths of the tube.