Formula: Torus Volume Radius
$$V ~=~ 2\pi^2 \, r^2 \, R$$
$$V ~=~ 2\pi^2 \, r^2 \, R$$
$$r ~=~ \frac{ 1 }{ \pi } \, \sqrt{ \frac{ V }{ 2R } }$$
$$R ~=~ \frac{ V }{ 2\pi^2 \, r^2 }$$
Volume
$$ V $$ Unit $$ \mathrm{m}^3 $$
Volume occupied by the torus ("donut").
Radius
$$ r $$ Unit $$ \mathrm{m} $$
Radius of the cross-sectional area. That is, the radius of the area when the torus is cut into two "half-tubes".
Radius
$$ R $$ Unit $$ \mathrm{m} $$
Radius from the center of the hole of the torus to half of the tube.