Formula: Lorentz Force (Magnetic) Magnetic force Magnetic flux density (B-field) Velocity Electric charge
$$\class{green}{F} ~=~ q \, \class{blue}{v} \, \class{violet}{B}$$
$$\class{green}{F} ~=~ q \, \class{blue}{v} \, \class{violet}{B}$$
$$\class{violet}{B} ~=~ \frac{ \class{green}{F} }{ \class{blue}{v} \, q }$$
$$\class{blue}{v} ~=~ \frac{ \class{green}{F} }{ q \, \class{violet}{B} }$$
$$q ~=~ \frac{ \class{green}{F} }{ \class{blue}{v} \, \class{violet}{B} }$$
Magnetic force
$$ \class{green}{F} $$ Unit $$ \mathrm{N} $$
Magnetic force acts on a charge \( q \) when it moves with velocity \( \class{blue}{v} \) through magnetic field \( \class{violet}{B} \). The requirement is that the magnetic field \( \class{violet}{B} \) is perpendicular to the velocity \( \class{blue}{v} \), that is: the two directions are orthogonal to each other.
This formula represents the magnetic component of the Lorentz force. (Lorentz force is the sum of electric and magnetic force).
Magnetic flux density (B-field)
$$ \class{violet}{B} $$ Unit $$ \mathrm{T} = \frac{\mathrm{kg}}{\mathrm{A} \, \mathrm{s}^2} $$
Magnetic flux density indicates how strong the magnetic field is in which the charge moves. The greater the magnetic flux density, the greater the magnetic force.
Velocity
$$ \class{blue}{\boldsymbol v} $$ Unit $$ \frac{\mathrm m}{\mathrm s} $$
Velocity of the charged particle. The greater the velocity of the charged particle, the greater the magnetic force.
Electric charge
$$ q $$ Unit $$ \mathrm{C} = \mathrm{As} $$
Electric charge can be repulsive or attractive (proton, electron). The greater the electric charge, the greater the magnetic force.