Formula: Right Circular Cylinder Volume Radius Height
$$V ~=~ \pi \, r^2 \, \class{red}{h}$$
$$V ~=~ \pi \, r^2 \, \class{red}{h}$$
$$r ~=~ \sqrt{ \frac{V}{\pi \, \class{red}{h}} }$$
$$\class{red}{h} ~=~ \frac{V}{2\pi \, r^2}$$
Volume
$$ V $$ Unit $$ \mathrm{m}^3 $$
The volume enclosed by a cylinder. Its volume depends on the cylinder height and the cylinder radius.
Radius
$$ r $$ Unit $$ \mathrm{m} $$
Radius of the cylinder, i.e. the radius of a circular cylinder base. When the radius of the cylinder is doubled, the volume is quadrupled.
Height
$$ \class{red}{h} $$ Unit $$ \mathrm{m} $$
Height of the cylinder. The higher the cylinder, the greater its volume.
Pi
$$ \pi $$ Unit $$ - $$
Pi is a mathematical constant and has the value \( \pi ~=~ 3.1415926... \)