Formula: Compton Scattering Wavelength difference Compton wavelength Scattering angle
$$\Delta \lambda ~=~ \lambda_{\text C} \, \left( 1 ~-~ \cos(\theta) \right)$$
$$\Delta \lambda ~=~ \lambda_{\text C} \, \left( 1 ~-~ \cos(\theta) \right)$$
$$\lambda_{\text C} ~=~ \frac{ \Delta \lambda }{ 1 - \cos(\theta) }$$
$$\theta ~=~ \arccos\left( 1 - \frac{ \Delta \lambda }{ \lambda_{\text C} } \right)$$
Wavelength difference
$$ \Delta \lambda $$ Unit $$ \mathrm{m} $$
Wavelength difference is the difference between the wavelength of the photon before the collision and the wavelength of the photon after the collision.
Compton wavelength
$$ \lambda_{\text C} $$ Unit $$ \mathrm{m} $$
Compton wavelength characterizes the collision particle. For example, an electron has a Compton wavelength of \( 2.426 \cdot 10^{-12} \mathrm{m} \).
Scattering angle
$$ \theta $$ Unit $$ - $$
Scattering angle is the enclosed angle after the collision, between the momentum of the particle (or the momentum of the photon) and the horizontal x-axis.