Formula: Angular momentum commutator (Lx and Ly)
$$[ L_{\text x}, L_{\text y} ] ~=~ \mathrm{i} \, \hbar \, L_{\text z}$$
Commutator
$$ [L_{\text x}, L_{\text y}] $$
This commutator for angular momentum is the term you get (in this case: \(\mathrm{i} \, \hbar \, L_{\text z}\)) when you swap the two angular momentum components \(L_{\text x}\) and \(L_{\text y}\). As you can see, the commutator is NOT zero.
Angular momentum operator
$$ L_{\text x} $$ Unit $$ \mathrm{Js} $$
This is the \(x\)-th component of the angular momentum vector operator \( \boldsymbol{L} \).
Angular momentum operator
$$ L_{\text y} $$ Unit $$ \mathrm{Js} $$
This is the \(y\)-th component of the angular momentum vector operator \( \boldsymbol{L} \).
Imaginary unit
$$ \mathrm{i} $$ Unit $$ - $$
Imaginary unit is a complex number for which is true: \( \mathrm{i} ~=~ \sqrt{-1} \).
Planck constant
$$ \hbar $$ Unit $$ \mathrm{Js} = \frac{ \mathrm{kg} \, \mathrm{m}^2 }{ \mathrm{s} } $$
Planck constant is a natural constant (of quantum mechanics) and has the value:
$$ \hbar ~=~ \frac{h}{2\pi} ~=~ 1.054 \cdot 10^{-34} \, \text{Js} $$